Xinying Hou, Dan Chen, Yan Li, Xiaoyu Zhang, Shijian Ge, Xinbai Jiang, Jinyou Shen
{"title":"Self-assembly of algal-bacterial granules induced by bacterial N-acyl-homoserine lactone variation in response to high-strength pyridine","authors":"Xinying Hou, Dan Chen, Yan Li, Xiaoyu Zhang, Shijian Ge, Xinbai Jiang, Jinyou Shen","doi":"10.1016/j.jhazmat.2025.137593","DOIUrl":null,"url":null,"abstract":"Algal-bacterial granules (ABGs) system represents a promising technology for organic wastewater treatment due to its high settleability, efficient oxygen transfer, and low-energy consumption. However, the secretion of extracellular polymeric substances (EPS) in algae, which played a key role in self-assembly of ABGs, would be inhibited by concentrated organic wastewater. This study proposed a novel strategy for developing ABGs by inducing bacterial <em>N</em>-acyl-homoserine lactone (AHL) variation through high-strength pyridine application. Results showed that bacterial long-chain AHL concentrations significantly increased in response to high-strength pyridine at 550<!-- --> <!-- -->mg<!-- --> <!-- -->L<sup>-1</sup>, inducing the secretion of algal extracellular aromatic proteins and facilitating ABGs construction. The ABGs system achieved over 99% pyridine removal efficiency and 82% settleability. Moreover, the proportions of <em>β</em>-sheet and <em>α</em>-helix structures in the extracellular aromatic proteins of ABGs increased, while the random coil structures decreased. This shift in protein structure lowered the surface free energy and energy barriers, which in turn enhanced the surface hydrophobicity and promoted cell adhesion. Furthermore, based on metatranscriptomic analysis, the mechanism for AHL-regulated physiological and behavioral responses between algae and bacteria in ABGs was proposed. This study provides an economically feasible approach to develop efficient and sustainable ABGs systems for industrial wastewater treatment.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"2 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137593","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Self-assembly of algal-bacterial granules induced by bacterial N-acyl-homoserine lactone variation in response to high-strength pyridine
Algal-bacterial granules (ABGs) system represents a promising technology for organic wastewater treatment due to its high settleability, efficient oxygen transfer, and low-energy consumption. However, the secretion of extracellular polymeric substances (EPS) in algae, which played a key role in self-assembly of ABGs, would be inhibited by concentrated organic wastewater. This study proposed a novel strategy for developing ABGs by inducing bacterial N-acyl-homoserine lactone (AHL) variation through high-strength pyridine application. Results showed that bacterial long-chain AHL concentrations significantly increased in response to high-strength pyridine at 550 mg L-1, inducing the secretion of algal extracellular aromatic proteins and facilitating ABGs construction. The ABGs system achieved over 99% pyridine removal efficiency and 82% settleability. Moreover, the proportions of β-sheet and α-helix structures in the extracellular aromatic proteins of ABGs increased, while the random coil structures decreased. This shift in protein structure lowered the surface free energy and energy barriers, which in turn enhanced the surface hydrophobicity and promoted cell adhesion. Furthermore, based on metatranscriptomic analysis, the mechanism for AHL-regulated physiological and behavioral responses between algae and bacteria in ABGs was proposed. This study provides an economically feasible approach to develop efficient and sustainable ABGs systems for industrial wastewater treatment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.