Rajiv V. Gavai, Mischa E. Jaensch, Olaf Kaczmarek, Frithjof Karsch, Mugdha Sarkar, Ravi Shanker, Sayantan Sharma, Sipaz Sharma, Tristan Ueding
{"title":"具有Möbius畴壁费米子的(2+1)-味QCD的手性交叉跃迁","authors":"Rajiv V. Gavai, Mischa E. Jaensch, Olaf Kaczmarek, Frithjof Karsch, Mugdha Sarkar, Ravi Shanker, Sayantan Sharma, Sipaz Sharma, Tristan Ueding","doi":"10.1103/physrevd.111.034507","DOIUrl":null,"url":null,"abstract":"The nonsinglet part of the chiral symmetry in quantum chromodynamics (QCD) with two light flavors is known to be restored through a crossover transition at a pseudocritical temperature. However, the temperature dependence of the singlet part of the chiral symmetry and whether it is effectively restored at the same temperature is not well understood. Using (2</a:mn>+</a:mo>1</a:mn></a:mrow></a:math>)-flavor QCD configurations generated using the Möbius domain-wall discretization on an <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>N</c:mi><c:mi>τ</c:mi></c:msub><c:mo>=</c:mo><c:mn>8</c:mn></c:math> lattice, we construct suitable observables where the singlet and nonsinglet chiral symmetries are disentangled in order to study their temperature dependence across the crossover transition. From the peak of the disconnected part of the chiral susceptibility, we obtain a pseudocritical temperature <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>T</e:mi></e:mrow><e:mrow><e:mi>p</e:mi><e:mi>c</e:mi></e:mrow></e:msub><e:mo>=</e:mo><e:msubsup><e:mrow><e:mn>158.7</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>2.3</e:mn></e:mrow><e:mrow><e:mo>+</e:mo><e:mn>2.6</e:mn></e:mrow></e:msubsup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi>MeV</e:mi></e:mrow></e:math> where the nonsinglet part of the chiral symmetry is effectively restored. From a calculation of the topological susceptibility and its temperature dependence we find that the singlet <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi mathvariant=\"normal\">U</g:mi><g:mi>A</g:mi></g:msub><g:mo stretchy=\"false\">(</g:mo><g:mn>1</g:mn><g:mo stretchy=\"false\">)</g:mo></g:math> part of the chiral symmetry is not effectively restored at <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>T</l:mi><l:mo>≲</l:mo><l:mn>186</l:mn><l:mtext> </l:mtext><l:mtext> </l:mtext><l:mi>MeV</l:mi></l:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"6 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspects of the chiral crossover transition in ( 2+1 )-flavor QCD with Möbius domain-wall fermions\",\"authors\":\"Rajiv V. Gavai, Mischa E. Jaensch, Olaf Kaczmarek, Frithjof Karsch, Mugdha Sarkar, Ravi Shanker, Sayantan Sharma, Sipaz Sharma, Tristan Ueding\",\"doi\":\"10.1103/physrevd.111.034507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonsinglet part of the chiral symmetry in quantum chromodynamics (QCD) with two light flavors is known to be restored through a crossover transition at a pseudocritical temperature. However, the temperature dependence of the singlet part of the chiral symmetry and whether it is effectively restored at the same temperature is not well understood. Using (2</a:mn>+</a:mo>1</a:mn></a:mrow></a:math>)-flavor QCD configurations generated using the Möbius domain-wall discretization on an <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>N</c:mi><c:mi>τ</c:mi></c:msub><c:mo>=</c:mo><c:mn>8</c:mn></c:math> lattice, we construct suitable observables where the singlet and nonsinglet chiral symmetries are disentangled in order to study their temperature dependence across the crossover transition. From the peak of the disconnected part of the chiral susceptibility, we obtain a pseudocritical temperature <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:msub><e:mrow><e:mi>T</e:mi></e:mrow><e:mrow><e:mi>p</e:mi><e:mi>c</e:mi></e:mrow></e:msub><e:mo>=</e:mo><e:msubsup><e:mrow><e:mn>158.7</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>2.3</e:mn></e:mrow><e:mrow><e:mo>+</e:mo><e:mn>2.6</e:mn></e:mrow></e:msubsup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi>MeV</e:mi></e:mrow></e:math> where the nonsinglet part of the chiral symmetry is effectively restored. From a calculation of the topological susceptibility and its temperature dependence we find that the singlet <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi mathvariant=\\\"normal\\\">U</g:mi><g:mi>A</g:mi></g:msub><g:mo stretchy=\\\"false\\\">(</g:mo><g:mn>1</g:mn><g:mo stretchy=\\\"false\\\">)</g:mo></g:math> part of the chiral symmetry is not effectively restored at <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:mi>T</l:mi><l:mo>≲</l:mo><l:mn>186</l:mn><l:mtext> </l:mtext><l:mtext> </l:mtext><l:mi>MeV</l:mi></l:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.034507\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Aspects of the chiral crossover transition in ( 2+1 )-flavor QCD with Möbius domain-wall fermions
The nonsinglet part of the chiral symmetry in quantum chromodynamics (QCD) with two light flavors is known to be restored through a crossover transition at a pseudocritical temperature. However, the temperature dependence of the singlet part of the chiral symmetry and whether it is effectively restored at the same temperature is not well understood. Using (2+1)-flavor QCD configurations generated using the Möbius domain-wall discretization on an Nτ=8 lattice, we construct suitable observables where the singlet and nonsinglet chiral symmetries are disentangled in order to study their temperature dependence across the crossover transition. From the peak of the disconnected part of the chiral susceptibility, we obtain a pseudocritical temperature Tpc=158.7−2.3+2.6MeV where the nonsinglet part of the chiral symmetry is effectively restored. From a calculation of the topological susceptibility and its temperature dependence we find that the singlet UA(1) part of the chiral symmetry is not effectively restored at T≲186MeV. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.