纳赫兹随机引力波的非高斯统计

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Xiao Xue, Zhen Pan, Liang Dai
{"title":"纳赫兹随机引力波的非高斯统计","authors":"Xiao Xue, Zhen Pan, Liang Dai","doi":"10.1103/physrevd.111.043022","DOIUrl":null,"url":null,"abstract":"Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular, the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in PTA Bayesian analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Gaussian statistics of nanohertz stochastic gravitational waves\",\"authors\":\"Xiao Xue, Zhen Pan, Liang Dai\",\"doi\":\"10.1103/physrevd.111.043022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular, the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in PTA Bayesian analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.043022\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.043022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

多个脉冲星定时阵列(pta)最近报道了nHz随机引力波背景(SGWB)的证据,引发了对其物理起源的激烈讨论。原则上,这些源可能是超大质量黑洞双星(SMBHBs),也可能是早期宇宙中的过程。两者之间的一个关键区别在于SGWB频率功率谱的统计。特别是,通常假设的高斯随机SGWB并不能准确描述集体SMBHB发射的分布。本文提出了计算smbhb期望的SGWB功率的非高斯统计量的半解析框架。我们发现(a)观测频率不可区分的单个smbhb之间的波干扰和(b)源数的泊松波动共同形成了非高斯统计量。利用本研究中开发的非高斯统计,我们研究了当前和未来PTA数据集在通过非高斯信息区分SGWB起源方面的敏感性。此外,我们发现了一个有趣的非高斯统计近似,这对于在PTA贝叶斯分析中准确和实际地处理非高斯性具有重要意义。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Gaussian statistics of nanohertz stochastic gravitational waves
Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular, the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in PTA Bayesian analyses. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信