G. Dolcetti, S. Piccolroaz, M. C. Bruno, E. Calamita, S. Larsen, G. Zolezzi, A. Siviglia
{"title":"高山调节河流中碳焙烧和二氧化碳通量的定量分析","authors":"G. Dolcetti, S. Piccolroaz, M. C. Bruno, E. Calamita, S. Larsen, G. Zolezzi, A. Siviglia","doi":"10.1029/2024wr037834","DOIUrl":null,"url":null,"abstract":"Carbon dioxide (<span data-altimg=\"/cms/asset/cfd621e3-5b3a-4657-b270-b89b5721986a/wrcr27673-math-0002.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0002\" display=\"inline\" location=\"graphic/wrcr27673-math-0002.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math>) fluxes in regulated Alpine rivers are driven by multiple biogeochemical and anthropogenic processes, acting on different spatiotemporal scales. We quantified the relative importance of these drivers and their effects on the dynamics of <span data-altimg=\"/cms/asset/19b5e807-fc94-4f6f-bbc0-d05bb981c9f3/wrcr27673-math-0003.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0003\" display=\"inline\" location=\"graphic/wrcr27673-math-0003.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> concentration and atmospheric exchange fluxes in a representative Alpine river segment regulated by a cascading hydropower system with diversion, which includes two residual flow reaches and a reach subject to hydropeaking. We combined instantaneous and time-resolved water chemistry and hydraulic measurements at different times of the year, and quantified the main <span data-altimg=\"/cms/asset/c4e4c69e-fa25-4557-a475-3f259d0b71a7/wrcr27673-math-0004.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0004\" display=\"inline\" location=\"graphic/wrcr27673-math-0004.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> fluxes by calibrating a one-dimensional transport-reaction model with measured data. As a novelty compared to previous inverse modeling applications, the model also included carbonate buffering, which contributed significantly to the <span data-altimg=\"/cms/asset/b2cf641c-ed2b-442d-8d71-5be84b833adf/wrcr27673-math-0005.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0005\" display=\"inline\" location=\"graphic/wrcr27673-math-0005.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> budget of the case study. The spatiotemporal distribution and drivers of <span data-altimg=\"/cms/asset/cbc2b417-910c-4752-a886-f8b36e300a0a/wrcr27673-math-0006.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0006\" display=\"inline\" location=\"graphic/wrcr27673-math-0006.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> fluxes depended on hydropower operations. Along the residual flow reaches, <span data-altimg=\"/cms/asset/a7648e6f-e87a-4e3e-a208-c090a9bf83de/wrcr27673-math-0007.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0007\" display=\"inline\" location=\"graphic/wrcr27673-math-0007.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> fluxes were directly affected by the upstream dams only in the first <span data-altimg=\"/cms/asset/159bfce3-f1c6-4b9a-9d05-8926084fa8fc/wrcr27673-math-0008.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0008\" display=\"inline\" location=\"graphic/wrcr27673-math-0008.png\">\n<semantics>\n<mrow>\n<mo>∼</mo>\n</mrow>\n${\\sim} $</annotation>\n</semantics></math> 2.5 km, where the supply of supersaturated water from the reservoirs was predominant. Downstream of the hydropower diversion outlets, the <span data-altimg=\"/cms/asset/0e74817c-f815-4098-b2ea-06f50fa62e06/wrcr27673-math-0009.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0009\" display=\"inline\" location=\"graphic/wrcr27673-math-0009.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> fluxes were dominated by systematic sub-daily fluctuations in <span data-altimg=\"/cms/asset/0e74e0f7-d436-4e1f-bae6-34ad165fe8a3/wrcr27673-math-0010.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0010\" display=\"inline\" location=\"graphic/wrcr27673-math-0010.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> transport and evasion fluxes (“carbopeaking”) driven by hydropeaking. Hydropower operational patterns and regulation approaches in Alpine rivers affect <span data-altimg=\"/cms/asset/0351b9a9-a014-4587-bc85-9e3bf408cfd2/wrcr27673-math-0011.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0011\" display=\"inline\" location=\"graphic/wrcr27673-math-0011.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> fluxes and their response to biogeochemical drivers significantly across different temporal scales. Our findings highlight the importance of considering all scales of <span data-altimg=\"/cms/asset/8cb2f39f-6a55-4f4c-a69e-8290f2214c34/wrcr27673-math-0012.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0012\" display=\"inline\" location=\"graphic/wrcr27673-math-0012.png\">\n<semantics>\n<mrow>\n<msub>\n<mtext>CO</mtext>\n<mn>2</mn>\n</msub>\n</mrow>\n${\\text{CO}}_{2}$</annotation>\n</semantics></math> variations for accurate quantification and understanding of these impacts, to clarify the role of natural and anthropogenic drivers in global carbon cycling.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"66 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Carbopeaking and CO2 Fluxes in a Regulated Alpine River\",\"authors\":\"G. Dolcetti, S. Piccolroaz, M. C. Bruno, E. Calamita, S. Larsen, G. Zolezzi, A. Siviglia\",\"doi\":\"10.1029/2024wr037834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dioxide (<span data-altimg=\\\"/cms/asset/cfd621e3-5b3a-4657-b270-b89b5721986a/wrcr27673-math-0002.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0002.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math>) fluxes in regulated Alpine rivers are driven by multiple biogeochemical and anthropogenic processes, acting on different spatiotemporal scales. We quantified the relative importance of these drivers and their effects on the dynamics of <span data-altimg=\\\"/cms/asset/19b5e807-fc94-4f6f-bbc0-d05bb981c9f3/wrcr27673-math-0003.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0003.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> concentration and atmospheric exchange fluxes in a representative Alpine river segment regulated by a cascading hydropower system with diversion, which includes two residual flow reaches and a reach subject to hydropeaking. We combined instantaneous and time-resolved water chemistry and hydraulic measurements at different times of the year, and quantified the main <span data-altimg=\\\"/cms/asset/c4e4c69e-fa25-4557-a475-3f259d0b71a7/wrcr27673-math-0004.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0004.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> fluxes by calibrating a one-dimensional transport-reaction model with measured data. As a novelty compared to previous inverse modeling applications, the model also included carbonate buffering, which contributed significantly to the <span data-altimg=\\\"/cms/asset/b2cf641c-ed2b-442d-8d71-5be84b833adf/wrcr27673-math-0005.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0005.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> budget of the case study. The spatiotemporal distribution and drivers of <span data-altimg=\\\"/cms/asset/cbc2b417-910c-4752-a886-f8b36e300a0a/wrcr27673-math-0006.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0006.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> fluxes depended on hydropower operations. Along the residual flow reaches, <span data-altimg=\\\"/cms/asset/a7648e6f-e87a-4e3e-a208-c090a9bf83de/wrcr27673-math-0007.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0007.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> fluxes were directly affected by the upstream dams only in the first <span data-altimg=\\\"/cms/asset/159bfce3-f1c6-4b9a-9d05-8926084fa8fc/wrcr27673-math-0008.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0008.png\\\">\\n<semantics>\\n<mrow>\\n<mo>∼</mo>\\n</mrow>\\n${\\\\sim} $</annotation>\\n</semantics></math> 2.5 km, where the supply of supersaturated water from the reservoirs was predominant. Downstream of the hydropower diversion outlets, the <span data-altimg=\\\"/cms/asset/0e74817c-f815-4098-b2ea-06f50fa62e06/wrcr27673-math-0009.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0009.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> fluxes were dominated by systematic sub-daily fluctuations in <span data-altimg=\\\"/cms/asset/0e74e0f7-d436-4e1f-bae6-34ad165fe8a3/wrcr27673-math-0010.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0010\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0010.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> transport and evasion fluxes (“carbopeaking”) driven by hydropeaking. Hydropower operational patterns and regulation approaches in Alpine rivers affect <span data-altimg=\\\"/cms/asset/0351b9a9-a014-4587-bc85-9e3bf408cfd2/wrcr27673-math-0011.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0011\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0011.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> fluxes and their response to biogeochemical drivers significantly across different temporal scales. Our findings highlight the importance of considering all scales of <span data-altimg=\\\"/cms/asset/8cb2f39f-6a55-4f4c-a69e-8290f2214c34/wrcr27673-math-0012.png\\\"></span><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27673:wrcr27673-math-0012\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27673-math-0012.png\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mtext>CO</mtext>\\n<mn>2</mn>\\n</msub>\\n</mrow>\\n${\\\\text{CO}}_{2}$</annotation>\\n</semantics></math> variations for accurate quantification and understanding of these impacts, to clarify the role of natural and anthropogenic drivers in global carbon cycling.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr037834\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037834","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
高寒河流二氧化碳通量受多种生物地球化学和人为过程驱动,在不同时空尺度上发挥作用。我们量化了这些驱动因素的相对重要性,以及它们对具有代表性的高山河流段的CO2浓度和大气交换通量的动态影响,该河流段由级联水电系统带导流调节,包括两个剩余流量河段和一个受水力峰值影响的河段。我们将一年中不同时间的瞬时和时间分辨水化学和水力测量相结合,通过标定一维输运-反应模型,量化了主要的CO2通量。与以前的逆建模应用相比,该模型还包括碳酸盐缓冲,这对案例研究的CO2${\text{CO}}_{2}$预算有很大贡献。CO2通量的时空分布及其驱动因素取决于水电运行。沿余流段,仅在前2.5 km ~ ${\sim} $ 2.5 km范围内,CO2${\text{CO}}_{2}$通量受上游大坝的直接影响,以水库的过饱和水供应为主。在水电引水口下游,CO2${\text{CO}}_{2}$通量主要是由水力调峰驱动的CO2${\text{CO}}_{2}$输送和规避通量(“碳峰”)的系统次日波动。在不同时间尺度上,高寒河流水电运行模式和调节方式显著影响CO2通量及其对生物地球化学驱动因素的响应。我们的研究结果强调了考虑二氧化碳变化的所有尺度对于准确量化和理解这些影响的重要性,以阐明自然和人为驱动因素在全球碳循环中的作用。
Quantification of Carbopeaking and CO2 Fluxes in a Regulated Alpine River
Carbon dioxide () fluxes in regulated Alpine rivers are driven by multiple biogeochemical and anthropogenic processes, acting on different spatiotemporal scales. We quantified the relative importance of these drivers and their effects on the dynamics of concentration and atmospheric exchange fluxes in a representative Alpine river segment regulated by a cascading hydropower system with diversion, which includes two residual flow reaches and a reach subject to hydropeaking. We combined instantaneous and time-resolved water chemistry and hydraulic measurements at different times of the year, and quantified the main fluxes by calibrating a one-dimensional transport-reaction model with measured data. As a novelty compared to previous inverse modeling applications, the model also included carbonate buffering, which contributed significantly to the budget of the case study. The spatiotemporal distribution and drivers of fluxes depended on hydropower operations. Along the residual flow reaches, fluxes were directly affected by the upstream dams only in the first 2.5 km, where the supply of supersaturated water from the reservoirs was predominant. Downstream of the hydropower diversion outlets, the fluxes were dominated by systematic sub-daily fluctuations in transport and evasion fluxes (“carbopeaking”) driven by hydropeaking. Hydropower operational patterns and regulation approaches in Alpine rivers affect fluxes and their response to biogeochemical drivers significantly across different temporal scales. Our findings highlight the importance of considering all scales of variations for accurate quantification and understanding of these impacts, to clarify the role of natural and anthropogenic drivers in global carbon cycling.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.