硼掺杂氧化炭黑杂化氧化铋在大电流密度下电催化CO2生成甲酸

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yujie Cao, Xiaoling Liu, Mingdong Sun, Wenwen Guan, Yu Zhou, Jun Wang
{"title":"硼掺杂氧化炭黑杂化氧化铋在大电流密度下电催化CO2生成甲酸","authors":"Yujie Cao, Xiaoling Liu, Mingdong Sun, Wenwen Guan, Yu Zhou, Jun Wang","doi":"10.1021/acs.iecr.4c04177","DOIUrl":null,"url":null,"abstract":"The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is a feasible green route for chemical production, but the design of an efficient catalyst is still challenging to fulfill the requirement of an industrial current. In this study, we reported a hybrid material Bi@BOC composed of boron-doped oxidized carbon black and bismuth oxide for the conversion of the CO<sub>2</sub> to formate under a large current density. Bi@BOC underwent an irreversible <i>in situ</i> reconstruction during the CO<sub>2</sub>RR process to form a Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> composite as the active sites that facilitated the production of formate across a broad current range of 300–800 mA cm<sup>–2</sup>, e.g. achieving a Faradaic efficiency of formate (FE<sub>formate</sub>) &gt; 95% at 800 mA cm<sup>–2</sup>. Additionally, Bi@BOC maintained the FE<sub>formate</sub> above 80% at 100 mA cm<sup>–2</sup> for 12 h in a membrane electrode assembly (MEA) reactor. <i>Operando</i> X-ray absorption fine structure (XAFS) spectra and <i>in situ</i> attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed the structural reconstruction into Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> and unraveled the roles of hybridizing B-doped carbon with bismuth: 1) promotion of the abundant Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> formation with high stability for the reversible valence variation of the Bi species; 2) improvement of the conductivity to accelerate the charge transfer; and 3) provision of the better hydrophobicity to inhibit the hydrogen evolution side reaction.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"55 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron-Doped Oxidized Carbon Black Hybridizing Bismuth Oxide for Electrocatalytic CO2 to Formate at a Large Current Density\",\"authors\":\"Yujie Cao, Xiaoling Liu, Mingdong Sun, Wenwen Guan, Yu Zhou, Jun Wang\",\"doi\":\"10.1021/acs.iecr.4c04177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is a feasible green route for chemical production, but the design of an efficient catalyst is still challenging to fulfill the requirement of an industrial current. In this study, we reported a hybrid material Bi@BOC composed of boron-doped oxidized carbon black and bismuth oxide for the conversion of the CO<sub>2</sub> to formate under a large current density. Bi@BOC underwent an irreversible <i>in situ</i> reconstruction during the CO<sub>2</sub>RR process to form a Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> composite as the active sites that facilitated the production of formate across a broad current range of 300–800 mA cm<sup>–2</sup>, e.g. achieving a Faradaic efficiency of formate (FE<sub>formate</sub>) &gt; 95% at 800 mA cm<sup>–2</sup>. Additionally, Bi@BOC maintained the FE<sub>formate</sub> above 80% at 100 mA cm<sup>–2</sup> for 12 h in a membrane electrode assembly (MEA) reactor. <i>Operando</i> X-ray absorption fine structure (XAFS) spectra and <i>in situ</i> attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed the structural reconstruction into Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> and unraveled the roles of hybridizing B-doped carbon with bismuth: 1) promotion of the abundant Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> formation with high stability for the reversible valence variation of the Bi species; 2) improvement of the conductivity to accelerate the charge transfer; and 3) provision of the better hydrophobicity to inhibit the hydrogen evolution side reaction.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04177\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学CO2还原反应(CO2RR)是化工生产中一种可行的绿色途径,但高效催化剂的设计仍是满足工业电流要求的挑战。在这项研究中,我们报道了一种由掺硼氧化炭黑和氧化铋组成的杂化材料Bi@BOC,用于在大电流密度下将CO2转化为甲酸盐。Bi@BOC在CO2RR过程中进行了不可逆的原位重构,形成了Bi2O3/Bi2O2CO3复合材料,作为促进甲酸在300-800 mA cm-2宽电流范围内生成的活性位点,例如实现甲酸的法拉第效率(FEformate) >;95%在800毫安cm-2。此外,Bi@BOC在膜电极组装(MEA)反应器中,在100 mA cm-2下保持FEformate在80%以上12小时。Operando x射线吸收精细结构(XAFS)光谱和原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)证实了结构重构为Bi2O2CO3,揭示了b掺杂碳与铋杂化的作用:1)促进了丰富的Bi2O2CO3的形成,具有高稳定性,对Bi物种的可逆价态变化具有促进作用;2)提高电导率,加速电荷转移;3)提供较好的疏水性,抑制析氢副反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boron-Doped Oxidized Carbon Black Hybridizing Bismuth Oxide for Electrocatalytic CO2 to Formate at a Large Current Density

Boron-Doped Oxidized Carbon Black Hybridizing Bismuth Oxide for Electrocatalytic CO2 to Formate at a Large Current Density
The electrochemical CO2 reduction reaction (CO2RR) is a feasible green route for chemical production, but the design of an efficient catalyst is still challenging to fulfill the requirement of an industrial current. In this study, we reported a hybrid material Bi@BOC composed of boron-doped oxidized carbon black and bismuth oxide for the conversion of the CO2 to formate under a large current density. Bi@BOC underwent an irreversible in situ reconstruction during the CO2RR process to form a Bi2O3/Bi2O2CO3 composite as the active sites that facilitated the production of formate across a broad current range of 300–800 mA cm–2, e.g. achieving a Faradaic efficiency of formate (FEformate) > 95% at 800 mA cm–2. Additionally, Bi@BOC maintained the FEformate above 80% at 100 mA cm–2 for 12 h in a membrane electrode assembly (MEA) reactor. Operando X-ray absorption fine structure (XAFS) spectra and in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed the structural reconstruction into Bi2O2CO3 and unraveled the roles of hybridizing B-doped carbon with bismuth: 1) promotion of the abundant Bi2O2CO3 formation with high stability for the reversible valence variation of the Bi species; 2) improvement of the conductivity to accelerate the charge transfer; and 3) provision of the better hydrophobicity to inhibit the hydrogen evolution side reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信