Maxime Fauconnier, Bhuvaneshwari Karunakaran, Alex Drago-González, William S. Y. Wong, Robin H. A. Ras, Heikki J. Nieminen
{"title":"水下超疏水表面上的快速毛细波","authors":"Maxime Fauconnier, Bhuvaneshwari Karunakaran, Alex Drago-González, William S. Y. Wong, Robin H. A. Ras, Heikki J. Nieminen","doi":"10.1038/s41467-025-55907-w","DOIUrl":null,"url":null,"abstract":"<p>The propagation of interfacial waves in free and constrained conditions, such as deep and shallow water, has been broadly studied over centuries. It is a common event that anyone can witness, while contemplating the ocean waves washing ashore. As a complementary configuration, this work introduces waves propagating on an interface restricted by its pinning to the solid microstructures of an underwater superhydrophobic surface. The latter has the ability to stabilize a well-defined microscale gas layer, called a plastron, trapped between the water and the solid phase. The acoustic radiation force produced with focused MHz ultrasound successfully triggers kHz “plastronic waves”, i.e., capillary waves travelling on a plastron’s gas-water interface. The exposed waves possess interesting features, i.e., (i) a high propagation speed up to 45 times faster than conventional deep water capillary waves of comparable wavelength and (ii) a relation of the propagation speed with the geometry of the microstructures. Based on this and on the observed variation of wave speed over time in conditions of gas-undersaturated or -supersaturated water, the usefulness of the plastronic waves for the non-destructive monitoring of the plastron’s stability and the spontaneous air diffusion is eventually demonstrated.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast capillary waves on an underwater superhydrophobic surface\",\"authors\":\"Maxime Fauconnier, Bhuvaneshwari Karunakaran, Alex Drago-González, William S. Y. Wong, Robin H. A. Ras, Heikki J. Nieminen\",\"doi\":\"10.1038/s41467-025-55907-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The propagation of interfacial waves in free and constrained conditions, such as deep and shallow water, has been broadly studied over centuries. It is a common event that anyone can witness, while contemplating the ocean waves washing ashore. As a complementary configuration, this work introduces waves propagating on an interface restricted by its pinning to the solid microstructures of an underwater superhydrophobic surface. The latter has the ability to stabilize a well-defined microscale gas layer, called a plastron, trapped between the water and the solid phase. The acoustic radiation force produced with focused MHz ultrasound successfully triggers kHz “plastronic waves”, i.e., capillary waves travelling on a plastron’s gas-water interface. The exposed waves possess interesting features, i.e., (i) a high propagation speed up to 45 times faster than conventional deep water capillary waves of comparable wavelength and (ii) a relation of the propagation speed with the geometry of the microstructures. Based on this and on the observed variation of wave speed over time in conditions of gas-undersaturated or -supersaturated water, the usefulness of the plastronic waves for the non-destructive monitoring of the plastron’s stability and the spontaneous air diffusion is eventually demonstrated.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-55907-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55907-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fast capillary waves on an underwater superhydrophobic surface
The propagation of interfacial waves in free and constrained conditions, such as deep and shallow water, has been broadly studied over centuries. It is a common event that anyone can witness, while contemplating the ocean waves washing ashore. As a complementary configuration, this work introduces waves propagating on an interface restricted by its pinning to the solid microstructures of an underwater superhydrophobic surface. The latter has the ability to stabilize a well-defined microscale gas layer, called a plastron, trapped between the water and the solid phase. The acoustic radiation force produced with focused MHz ultrasound successfully triggers kHz “plastronic waves”, i.e., capillary waves travelling on a plastron’s gas-water interface. The exposed waves possess interesting features, i.e., (i) a high propagation speed up to 45 times faster than conventional deep water capillary waves of comparable wavelength and (ii) a relation of the propagation speed with the geometry of the microstructures. Based on this and on the observed variation of wave speed over time in conditions of gas-undersaturated or -supersaturated water, the usefulness of the plastronic waves for the non-destructive monitoring of the plastron’s stability and the spontaneous air diffusion is eventually demonstrated.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.