共翻译蛋白聚集和核糖体延迟作为广谱抗菌机制

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Laleh Khodaparast, Ladan Khodaparast, Ramon Duran-Romaña, Guiqin Wu, Bert Houben, Wouter Duverger, Matthias De Vleeschouwer, Katerina Konstantoulea, Fleur Nysen, Thomas Schalck, Daniel J. Curwen, Lisandra L. Martin, Sebastien Carpentier, Bernard Scorneaux, Jan Michiels, Joost Schymkowitz, Frederic Rousseau
{"title":"共翻译蛋白聚集和核糖体延迟作为广谱抗菌机制","authors":"Laleh Khodaparast, Ladan Khodaparast, Ramon Duran-Romaña, Guiqin Wu, Bert Houben, Wouter Duverger, Matthias De Vleeschouwer, Katerina Konstantoulea, Fleur Nysen, Thomas Schalck, Daniel J. Curwen, Lisandra L. Martin, Sebastien Carpentier, Bernard Scorneaux, Jan Michiels, Joost Schymkowitz, Frederic Rousseau","doi":"10.1038/s41467-025-56873-z","DOIUrl":null,"url":null,"abstract":"<p>Drug-resistant bacteria pose an urgent global health threat, necessitating the development of antibacterial compounds with novel modes of action. Protein biosynthesis accounts for up to half of the energy expenditure of bacterial cells, and consequently inhibiting the efficiency or fidelity of the bacterial ribosome is a major target of existing antibiotics. Here, we describe an alternative mode of action that affects the same process: allowing translation to proceed but causing co-translational aggregation of the nascent peptidic chain. We show that treatment with an aggregation-prone peptide induces formation of polar inclusion bodies and activates the SsrA ribosome rescue pathway in bacteria. The inclusion bodies contain ribosomal proteins and ribosome hibernation factors, as well as mRNAs and cognate nascent chains of many proteins in amyloid-like structures, with a bias for membrane proteins with a fold rich in long-range beta-sheet interactions. The peptide is bactericidal against a wide range of pathogenic bacteria in planktonic growth and in biofilms, and reduces bacterial loads in mouse models of <i>Escherichia coli</i> and <i>Acinetobacter baumannii</i> infections. Our results indicate that disrupting protein homeostasis via co-translational aggregation constitutes a promising strategy for development of broad-spectrum antibacterials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"78 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-translational protein aggregation and ribosome stalling as a broad-spectrum antibacterial mechanism\",\"authors\":\"Laleh Khodaparast, Ladan Khodaparast, Ramon Duran-Romaña, Guiqin Wu, Bert Houben, Wouter Duverger, Matthias De Vleeschouwer, Katerina Konstantoulea, Fleur Nysen, Thomas Schalck, Daniel J. Curwen, Lisandra L. Martin, Sebastien Carpentier, Bernard Scorneaux, Jan Michiels, Joost Schymkowitz, Frederic Rousseau\",\"doi\":\"10.1038/s41467-025-56873-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug-resistant bacteria pose an urgent global health threat, necessitating the development of antibacterial compounds with novel modes of action. Protein biosynthesis accounts for up to half of the energy expenditure of bacterial cells, and consequently inhibiting the efficiency or fidelity of the bacterial ribosome is a major target of existing antibiotics. Here, we describe an alternative mode of action that affects the same process: allowing translation to proceed but causing co-translational aggregation of the nascent peptidic chain. We show that treatment with an aggregation-prone peptide induces formation of polar inclusion bodies and activates the SsrA ribosome rescue pathway in bacteria. The inclusion bodies contain ribosomal proteins and ribosome hibernation factors, as well as mRNAs and cognate nascent chains of many proteins in amyloid-like structures, with a bias for membrane proteins with a fold rich in long-range beta-sheet interactions. The peptide is bactericidal against a wide range of pathogenic bacteria in planktonic growth and in biofilms, and reduces bacterial loads in mouse models of <i>Escherichia coli</i> and <i>Acinetobacter baumannii</i> infections. Our results indicate that disrupting protein homeostasis via co-translational aggregation constitutes a promising strategy for development of broad-spectrum antibacterials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56873-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56873-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

耐药细菌对全球健康构成了紧迫的威胁,需要开发具有新型作用方式的抗菌化合物。蛋白质生物合成占细菌细胞能量消耗的一半,因此抑制细菌核糖体的效率或保真度是现有抗生素的主要目标。在这里,我们描述了影响相同过程的另一种作用模式:允许翻译继续进行,但导致新生肽链的共翻译聚集。我们发现,用易于聚集的肽处理可诱导极性包涵体的形成,并激活细菌中的SsrA核糖体救援途径。包涵体包含核糖体蛋白和核糖体冬眠因子,以及mrna和淀粉样结构中许多蛋白质的同源新生链,偏爱具有富含远程β -片相互作用折叠的膜蛋白。该肽对浮游生长和生物膜中的多种致病菌具有杀菌作用,并减少大肠杆菌和鲍曼不动杆菌感染小鼠模型中的细菌负荷。我们的研究结果表明,通过共翻译聚集破坏蛋白质稳态是开发广谱抗菌药物的一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Co-translational protein aggregation and ribosome stalling as a broad-spectrum antibacterial mechanism

Co-translational protein aggregation and ribosome stalling as a broad-spectrum antibacterial mechanism

Drug-resistant bacteria pose an urgent global health threat, necessitating the development of antibacterial compounds with novel modes of action. Protein biosynthesis accounts for up to half of the energy expenditure of bacterial cells, and consequently inhibiting the efficiency or fidelity of the bacterial ribosome is a major target of existing antibiotics. Here, we describe an alternative mode of action that affects the same process: allowing translation to proceed but causing co-translational aggregation of the nascent peptidic chain. We show that treatment with an aggregation-prone peptide induces formation of polar inclusion bodies and activates the SsrA ribosome rescue pathway in bacteria. The inclusion bodies contain ribosomal proteins and ribosome hibernation factors, as well as mRNAs and cognate nascent chains of many proteins in amyloid-like structures, with a bias for membrane proteins with a fold rich in long-range beta-sheet interactions. The peptide is bactericidal against a wide range of pathogenic bacteria in planktonic growth and in biofilms, and reduces bacterial loads in mouse models of Escherichia coli and Acinetobacter baumannii infections. Our results indicate that disrupting protein homeostasis via co-translational aggregation constitutes a promising strategy for development of broad-spectrum antibacterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信