Xinke Wang, William D. Fahy, Linna Xie, Hui Peng, Jonathan P. D. Abbatt
{"title":"室内表面不饱和脂膜的快速自氧化","authors":"Xinke Wang, William D. Fahy, Linna Xie, Hui Peng, Jonathan P. D. Abbatt","doi":"10.1038/s41467-025-56802-0","DOIUrl":null,"url":null,"abstract":"<p>Organic films containing unsaturated lipids are widespread, yet their oxidation pathways with associated impacts on contaminant lifetimes and human exposure remain poorly explored under indoor environmental conditions. This study demonstrates that UVA radiation and radical exposure drive rapid autoxidation of thin films of methyl linolenate (ML) and canola oil (which contains polyunsaturated triglycerides), primarily producing organic hydroperoxides. For ML films this fast chemistry occurs at the same rate under entirely dark, genuine indoor conditions as it does when the films are exposed to significantly higher <sup>•</sup>OH radicals in a flow reactor. Both <sup>•</sup>OH and organic radicals are detected within the oxidized films, propagating fast autoxidation in dark indoor environments with minimal sensitivity to the radical initiation rate. When mixed into the films, bisphenol A is hydroxylated, illustrating potential transformation pathways for toxic organic contaminants. This study uncovers insights into lipid autoxidation processes under environmental conditions and underscores their potential health impacts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast autoxidation of unsaturated lipid films on indoor surfaces\",\"authors\":\"Xinke Wang, William D. Fahy, Linna Xie, Hui Peng, Jonathan P. D. Abbatt\",\"doi\":\"10.1038/s41467-025-56802-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic films containing unsaturated lipids are widespread, yet their oxidation pathways with associated impacts on contaminant lifetimes and human exposure remain poorly explored under indoor environmental conditions. This study demonstrates that UVA radiation and radical exposure drive rapid autoxidation of thin films of methyl linolenate (ML) and canola oil (which contains polyunsaturated triglycerides), primarily producing organic hydroperoxides. For ML films this fast chemistry occurs at the same rate under entirely dark, genuine indoor conditions as it does when the films are exposed to significantly higher <sup>•</sup>OH radicals in a flow reactor. Both <sup>•</sup>OH and organic radicals are detected within the oxidized films, propagating fast autoxidation in dark indoor environments with minimal sensitivity to the radical initiation rate. When mixed into the films, bisphenol A is hydroxylated, illustrating potential transformation pathways for toxic organic contaminants. This study uncovers insights into lipid autoxidation processes under environmental conditions and underscores their potential health impacts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56802-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56802-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fast autoxidation of unsaturated lipid films on indoor surfaces
Organic films containing unsaturated lipids are widespread, yet their oxidation pathways with associated impacts on contaminant lifetimes and human exposure remain poorly explored under indoor environmental conditions. This study demonstrates that UVA radiation and radical exposure drive rapid autoxidation of thin films of methyl linolenate (ML) and canola oil (which contains polyunsaturated triglycerides), primarily producing organic hydroperoxides. For ML films this fast chemistry occurs at the same rate under entirely dark, genuine indoor conditions as it does when the films are exposed to significantly higher •OH radicals in a flow reactor. Both •OH and organic radicals are detected within the oxidized films, propagating fast autoxidation in dark indoor environments with minimal sensitivity to the radical initiation rate. When mixed into the films, bisphenol A is hydroxylated, illustrating potential transformation pathways for toxic organic contaminants. This study uncovers insights into lipid autoxidation processes under environmental conditions and underscores their potential health impacts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.