2000卷/s三维超声探头,单片集成23 $\times$ 23 mm2 4096元CMUT阵列

IF 4.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nuriel N. M. Rozsa;Zhao Chen;Taehoon Kim;Peng Guo;Yannick M. Hopf;Jason Voorneveld;Djalma Simoes dos Santos;Emile Noothout;Zu-Yao Chang;Chao Chen;Vincent A. Henneken;Nico de Jong;Hendrik J. Vos;Johan G. Bosch;Martin D. Verweij;Michiel A. P. Pertijs
{"title":"2000卷/s三维超声探头,单片集成23 $\\times$ 23 mm2 4096元CMUT阵列","authors":"Nuriel N. M. Rozsa;Zhao Chen;Taehoon Kim;Peng Guo;Yannick M. Hopf;Jason Voorneveld;Djalma Simoes dos Santos;Emile Noothout;Zu-Yao Chang;Chao Chen;Vincent A. Henneken;Nico de Jong;Hendrik J. Vos;Johan G. Bosch;Martin D. Verweij;Michiel A. P. Pertijs","doi":"10.1109/JSSC.2025.3534087","DOIUrl":null,"url":null,"abstract":"This article presents a 4096-element ultrasound probe for high volume-rate (HVR) cardiovascular imaging. The probe consists of two application-specific integrated circuits (ASICs), each of which interfaces with a 2048-element monolithically-integrated capacitive micro-machined ultrasound transducer (CMUT) array. The probe can image a <inline-formula> <tex-math>$60{^{\\circ }} \\times 60{^{\\circ }} \\times 10$ </tex-math></inline-formula>-cm volume at 2000 volumes/s, the highest volume-rate with in-probe channel-count reduction reported to date. It uses <inline-formula> <tex-math>$2\\times 2$ </tex-math></inline-formula> delay-and-sum micro-beamforming (<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>BF) and <inline-formula> <tex-math>$2\\times $ </tex-math></inline-formula> time-division multiplexing (TDM) to achieve an <inline-formula> <tex-math>$8\\times $ </tex-math></inline-formula> receive (RX) channel-count reduction. Equalization, trained using a pseudorandom bit-sequence generated on the chip, reduces TDM-induced crosstalk by 10 dB, enabling power-efficient scaling of the cable drivers. The ASICs also implement a novel transmit (TX) beamformer (BF) that operates as a programmable digital pipeline, which enables steering of arbitrary pulse-density modulated (PDM) waveforms. The TX BF drives element-level 65 V unipolar pulsers, which in turn drive the CMUT array. Both the TX BF and RX <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>BF are programmed with shift-registers (SRs) that can either be programmed in a row-column fashion for fast upload times, or daisy-chain fashion for a higher flexibility. The layout of the ASICs is matched to the 365-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m-pitch monolithically-integrated CMUT array. While operating, the RX and logic power consumption per element is 0.85 and 0.10 mW, respectively. TX power consumption is highly waveform dependent, but is nominally 0.34 mW. Compared to the prior art, the probe has the highest volume rate, and features among the largest imaging arrays (both in terms of element-count and aperture) with a high flexibility in defining the TX waveform. These properties make it a suitable option for applications requiring HVR imaging of a large region of interest.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"60 4","pages":"1397-1410"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2000-volumes/s 3-D Ultrasound Probe With Monolithically-Integrated 23 × 23-mm² 4096 -Element CMUT Array\",\"authors\":\"Nuriel N. M. Rozsa;Zhao Chen;Taehoon Kim;Peng Guo;Yannick M. Hopf;Jason Voorneveld;Djalma Simoes dos Santos;Emile Noothout;Zu-Yao Chang;Chao Chen;Vincent A. Henneken;Nico de Jong;Hendrik J. Vos;Johan G. Bosch;Martin D. Verweij;Michiel A. P. Pertijs\",\"doi\":\"10.1109/JSSC.2025.3534087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a 4096-element ultrasound probe for high volume-rate (HVR) cardiovascular imaging. The probe consists of two application-specific integrated circuits (ASICs), each of which interfaces with a 2048-element monolithically-integrated capacitive micro-machined ultrasound transducer (CMUT) array. The probe can image a <inline-formula> <tex-math>$60{^{\\\\circ }} \\\\times 60{^{\\\\circ }} \\\\times 10$ </tex-math></inline-formula>-cm volume at 2000 volumes/s, the highest volume-rate with in-probe channel-count reduction reported to date. It uses <inline-formula> <tex-math>$2\\\\times 2$ </tex-math></inline-formula> delay-and-sum micro-beamforming (<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>BF) and <inline-formula> <tex-math>$2\\\\times $ </tex-math></inline-formula> time-division multiplexing (TDM) to achieve an <inline-formula> <tex-math>$8\\\\times $ </tex-math></inline-formula> receive (RX) channel-count reduction. Equalization, trained using a pseudorandom bit-sequence generated on the chip, reduces TDM-induced crosstalk by 10 dB, enabling power-efficient scaling of the cable drivers. The ASICs also implement a novel transmit (TX) beamformer (BF) that operates as a programmable digital pipeline, which enables steering of arbitrary pulse-density modulated (PDM) waveforms. The TX BF drives element-level 65 V unipolar pulsers, which in turn drive the CMUT array. Both the TX BF and RX <inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>BF are programmed with shift-registers (SRs) that can either be programmed in a row-column fashion for fast upload times, or daisy-chain fashion for a higher flexibility. The layout of the ASICs is matched to the 365-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m-pitch monolithically-integrated CMUT array. While operating, the RX and logic power consumption per element is 0.85 and 0.10 mW, respectively. TX power consumption is highly waveform dependent, but is nominally 0.34 mW. Compared to the prior art, the probe has the highest volume rate, and features among the largest imaging arrays (both in terms of element-count and aperture) with a high flexibility in defining the TX waveform. These properties make it a suitable option for applications requiring HVR imaging of a large region of interest.\",\"PeriodicalId\":13129,\"journal\":{\"name\":\"IEEE Journal of Solid-state Circuits\",\"volume\":\"60 4\",\"pages\":\"1397-1410\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Solid-state Circuits\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10880503/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10880503/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍一种用于高容积率(HVR)心血管成像的4096元超声探头。该探头由两个专用集成电路(asic)组成,每个集成电路都与2048单元单片集成电容式微机械超声换能器(CMUT)阵列接口。探针可以以2000体积/秒的速度成像$60{^{\circ}} × 60{^{\circ}} × 10$ -cm的体积,这是迄今为止报道的探头内通道计数减少的最高体积率。它使用$2 × 2$延迟和微波束成形($\mu $ BF)和$2 ×时分多路复用(TDM)来实现$8 × $接收(RX)信道计数减少。利用芯片上生成的伪随机位序列进行均衡训练,可将tdm引起的串扰减少10 dB,从而实现电缆驱动器的节能缩放。asic还实现了一种新型的传输(TX)波束形成器(BF),该波束形成器作为可编程数字管道运行,可以控制任意脉冲密度调制(PDM)波形。TX BF驱动元件级65 V单极脉冲,进而驱动CMUT阵列。TX BF和RX $\mu $ BF都是用移位寄存器(SRs)编程的,它可以以行-列方式编程,以实现快速上传时间,也可以以菊花链方式编程,以获得更高的灵活性。asic的布局与365- $\mu $ m-pitch单片集成CMUT阵列相匹配。工作时,每个元件的RX和逻辑功耗分别为0.85和0.10 mW。TX功耗与波形高度相关,但名义上为0.34 mW。与现有技术相比,该探头具有最高的体积率,并且具有最大的成像阵列(在元件计数和孔径方面),在定义TX波形方面具有很高的灵活性。这些特性使其成为需要对大区域感兴趣的HVR成像的应用的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 2000-volumes/s 3-D Ultrasound Probe With Monolithically-Integrated 23 × 23-mm² 4096 -Element CMUT Array
This article presents a 4096-element ultrasound probe for high volume-rate (HVR) cardiovascular imaging. The probe consists of two application-specific integrated circuits (ASICs), each of which interfaces with a 2048-element monolithically-integrated capacitive micro-machined ultrasound transducer (CMUT) array. The probe can image a $60{^{\circ }} \times 60{^{\circ }} \times 10$ -cm volume at 2000 volumes/s, the highest volume-rate with in-probe channel-count reduction reported to date. It uses $2\times 2$ delay-and-sum micro-beamforming ( $\mu $ BF) and $2\times $ time-division multiplexing (TDM) to achieve an $8\times $ receive (RX) channel-count reduction. Equalization, trained using a pseudorandom bit-sequence generated on the chip, reduces TDM-induced crosstalk by 10 dB, enabling power-efficient scaling of the cable drivers. The ASICs also implement a novel transmit (TX) beamformer (BF) that operates as a programmable digital pipeline, which enables steering of arbitrary pulse-density modulated (PDM) waveforms. The TX BF drives element-level 65 V unipolar pulsers, which in turn drive the CMUT array. Both the TX BF and RX $\mu $ BF are programmed with shift-registers (SRs) that can either be programmed in a row-column fashion for fast upload times, or daisy-chain fashion for a higher flexibility. The layout of the ASICs is matched to the 365- $\mu $ m-pitch monolithically-integrated CMUT array. While operating, the RX and logic power consumption per element is 0.85 and 0.10 mW, respectively. TX power consumption is highly waveform dependent, but is nominally 0.34 mW. Compared to the prior art, the probe has the highest volume rate, and features among the largest imaging arrays (both in terms of element-count and aperture) with a high flexibility in defining the TX waveform. These properties make it a suitable option for applications requiring HVR imaging of a large region of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Solid-state Circuits
IEEE Journal of Solid-state Circuits 工程技术-工程:电子与电气
CiteScore
11.00
自引率
20.40%
发文量
351
审稿时长
3-6 weeks
期刊介绍: The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信