Camilla Pegoraro, Ainoa Guinart, Esther Masiá Sanchis, Daniel Doellerer, Marc C A Stuart, Inmaculada Conejos-Sánchez, Ben L Feringa, María J Vicent
{"title":"光驱动分子马达-多肽共轭物支持可控细胞吸收。","authors":"Camilla Pegoraro, Ainoa Guinart, Esther Masiá Sanchis, Daniel Doellerer, Marc C A Stuart, Inmaculada Conejos-Sánchez, Ben L Feringa, María J Vicent","doi":"10.1039/d4tb02434f","DOIUrl":null,"url":null,"abstract":"<p><p>While light-driven molecular motors (MMs) hold immense potential to control cell function, low biocompatibility and solubility have hampered their implementation. We developed a novel polypeptide-conjugated MM by linking a propargyl-derivatized light-driven MM to a poly-L-glutamic acid-based carrier (P) with inherent mitochondria tropism through click chemistry, denoted P-MM. P-MM effectively maintained the parental stability and unidirectional rotational capabilities of MM upon irradiation at 405 nm. Light-induced supramolecular conformational changes significantly increased cell uptake compared to non-irradiated controls while retaining the subcellular targeting capacity of P. P-MM exhibited minimal cytotoxicity and reactive oxygen species production, suggesting a non-disruptive interaction with cell membranes. Overall, we establish a connection between irradiation and enhanced biological responses, demonstrating the potential of integrating MMs with targeted polymeric nanocarriers for controlled, light-responsive behavior in biological systems and innovative applications in advanced therapeutic/diagnostic strategies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A light-driven molecular motor-polypeptide conjugate supports controlled cell uptake.\",\"authors\":\"Camilla Pegoraro, Ainoa Guinart, Esther Masiá Sanchis, Daniel Doellerer, Marc C A Stuart, Inmaculada Conejos-Sánchez, Ben L Feringa, María J Vicent\",\"doi\":\"10.1039/d4tb02434f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While light-driven molecular motors (MMs) hold immense potential to control cell function, low biocompatibility and solubility have hampered their implementation. We developed a novel polypeptide-conjugated MM by linking a propargyl-derivatized light-driven MM to a poly-L-glutamic acid-based carrier (P) with inherent mitochondria tropism through click chemistry, denoted P-MM. P-MM effectively maintained the parental stability and unidirectional rotational capabilities of MM upon irradiation at 405 nm. Light-induced supramolecular conformational changes significantly increased cell uptake compared to non-irradiated controls while retaining the subcellular targeting capacity of P. P-MM exhibited minimal cytotoxicity and reactive oxygen species production, suggesting a non-disruptive interaction with cell membranes. Overall, we establish a connection between irradiation and enhanced biological responses, demonstrating the potential of integrating MMs with targeted polymeric nanocarriers for controlled, light-responsive behavior in biological systems and innovative applications in advanced therapeutic/diagnostic strategies.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb02434f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02434f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A light-driven molecular motor-polypeptide conjugate supports controlled cell uptake.
While light-driven molecular motors (MMs) hold immense potential to control cell function, low biocompatibility and solubility have hampered their implementation. We developed a novel polypeptide-conjugated MM by linking a propargyl-derivatized light-driven MM to a poly-L-glutamic acid-based carrier (P) with inherent mitochondria tropism through click chemistry, denoted P-MM. P-MM effectively maintained the parental stability and unidirectional rotational capabilities of MM upon irradiation at 405 nm. Light-induced supramolecular conformational changes significantly increased cell uptake compared to non-irradiated controls while retaining the subcellular targeting capacity of P. P-MM exhibited minimal cytotoxicity and reactive oxygen species production, suggesting a non-disruptive interaction with cell membranes. Overall, we establish a connection between irradiation and enhanced biological responses, demonstrating the potential of integrating MMs with targeted polymeric nanocarriers for controlled, light-responsive behavior in biological systems and innovative applications in advanced therapeutic/diagnostic strategies.