氧化还原失衡和缺氧诱导因素:一个多方面的串扰。

Ravi, Jogender Singh
{"title":"氧化还原失衡和缺氧诱导因素:一个多方面的串扰。","authors":"Ravi, Jogender Singh","doi":"10.1111/febs.70013","DOIUrl":null,"url":null,"abstract":"<p><p>Redox homeostasis, the delicate balance between oxidative and reductive processes, is crucial for cellular function and overall organismal health. At the molecular level, cells need to maintain a fine balance between the levels of reactive oxygen species (ROS) and reducing equivalents such as glutathione and nicotinamide adenine dinucleotide phosphate. The perturbation of redox homeostasis due to excessive ROS production leads to oxidative stress that can damage lipids, proteins, and nucleic acids. Conversely, an overly reduced cellular environment due to overabundant reducing equivalents results in reductive stress, which also interferes with important cellular signaling and physiological processes. Disrupted redox homeostasis is linked to various pathological conditions, including neurodegenerative diseases, inflammatory diseases, cancer, and cardiovascular diseases. Cells employ diverse mechanisms to manage redox imbalance. The hypoxia response pathway, mediated by hypoxia-inducible factors and responsible for sensing and defending against low oxygen levels, plays a vital role in maintaining redox homeostasis. In this review, we highlight the complex and multifaceted crosstalk between hypoxia-inducible factors and redox homeostasis and discuss avenues for future research. Understanding the molecular mechanisms that link hypoxia-inducible factors to oxidative and reductive stresses is essential for comprehending several pathological conditions associated with hypoxia and redox imbalance.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox imbalance and hypoxia-inducible factors: a multifaceted crosstalk.\",\"authors\":\"Ravi, Jogender Singh\",\"doi\":\"10.1111/febs.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox homeostasis, the delicate balance between oxidative and reductive processes, is crucial for cellular function and overall organismal health. At the molecular level, cells need to maintain a fine balance between the levels of reactive oxygen species (ROS) and reducing equivalents such as glutathione and nicotinamide adenine dinucleotide phosphate. The perturbation of redox homeostasis due to excessive ROS production leads to oxidative stress that can damage lipids, proteins, and nucleic acids. Conversely, an overly reduced cellular environment due to overabundant reducing equivalents results in reductive stress, which also interferes with important cellular signaling and physiological processes. Disrupted redox homeostasis is linked to various pathological conditions, including neurodegenerative diseases, inflammatory diseases, cancer, and cardiovascular diseases. Cells employ diverse mechanisms to manage redox imbalance. The hypoxia response pathway, mediated by hypoxia-inducible factors and responsible for sensing and defending against low oxygen levels, plays a vital role in maintaining redox homeostasis. In this review, we highlight the complex and multifaceted crosstalk between hypoxia-inducible factors and redox homeostasis and discuss avenues for future research. Understanding the molecular mechanisms that link hypoxia-inducible factors to oxidative and reductive stresses is essential for comprehending several pathological conditions associated with hypoxia and redox imbalance.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原稳态是氧化和还原过程之间的微妙平衡,对细胞功能和整体机体健康至关重要。在分子水平上,细胞需要在活性氧(ROS)和还原性物质(如谷胱甘肽和烟酰胺腺嘌呤二核苷酸磷酸)的水平之间保持良好的平衡。过量的ROS产生导致氧化还原稳态的扰动,从而导致氧化应激,从而损害脂质、蛋白质和核酸。相反,由于过多的还原当量而导致的过度还原的细胞环境导致还原性应激,这也干扰了重要的细胞信号传导和生理过程。氧化还原稳态的破坏与各种病理状况有关,包括神经退行性疾病、炎症性疾病、癌症和心血管疾病。细胞采用多种机制来管理氧化还原失衡。缺氧反应通路由缺氧诱导因子介导,负责感知和防御低氧水平,在维持氧化还原稳态中起着至关重要的作用。在这篇综述中,我们强调了缺氧诱导因子与氧化还原稳态之间复杂和多方面的相互作用,并讨论了未来的研究方向。了解将缺氧诱导因子与氧化和还原应激联系起来的分子机制对于理解与缺氧和氧化还原失衡相关的几种病理状况至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redox imbalance and hypoxia-inducible factors: a multifaceted crosstalk.

Redox homeostasis, the delicate balance between oxidative and reductive processes, is crucial for cellular function and overall organismal health. At the molecular level, cells need to maintain a fine balance between the levels of reactive oxygen species (ROS) and reducing equivalents such as glutathione and nicotinamide adenine dinucleotide phosphate. The perturbation of redox homeostasis due to excessive ROS production leads to oxidative stress that can damage lipids, proteins, and nucleic acids. Conversely, an overly reduced cellular environment due to overabundant reducing equivalents results in reductive stress, which also interferes with important cellular signaling and physiological processes. Disrupted redox homeostasis is linked to various pathological conditions, including neurodegenerative diseases, inflammatory diseases, cancer, and cardiovascular diseases. Cells employ diverse mechanisms to manage redox imbalance. The hypoxia response pathway, mediated by hypoxia-inducible factors and responsible for sensing and defending against low oxygen levels, plays a vital role in maintaining redox homeostasis. In this review, we highlight the complex and multifaceted crosstalk between hypoxia-inducible factors and redox homeostasis and discuss avenues for future research. Understanding the molecular mechanisms that link hypoxia-inducible factors to oxidative and reductive stresses is essential for comprehending several pathological conditions associated with hypoxia and redox imbalance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信