Ajay A Madhavan, Zhongxing Zhou, Paul J Farnsworth, Jamison Thorne, Timothy J Amrhein, Peter G Kranz, Waleed Brinjikji, Jeremy K Cutsforth-Gregory, Michelle L Kodet, Nikkole M Weber, Grace Thompson, Felix E Diehn, Lifeng Yu
{"title":"基于卷积神经网络去噪的光子计数CT脊髓造影检测csf -静脉瘘的优化:重建技术的对比分析。","authors":"Ajay A Madhavan, Zhongxing Zhou, Paul J Farnsworth, Jamison Thorne, Timothy J Amrhein, Peter G Kranz, Waleed Brinjikji, Jeremy K Cutsforth-Gregory, Michelle L Kodet, Nikkole M Weber, Grace Thompson, Felix E Diehn, Lifeng Yu","doi":"10.3174/ajnr.A8695","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Photon-counting detector CT myelography (PCD-CTM) is a recently described technique used for detecting spinal CSF leaks, including CSF-venous fistulas. Various image reconstruction techniques, including smoother-versus-sharper kernels and virtual monoenergetic images, are available with photon-counting CT. Moreover, denoising algorithms have shown promise in improving sharp kernel images. No prior studies have compared image quality of these different reconstructions on photon-counting CT myelography. Here, we sought to compare several image reconstructions using various parameters important for the detection of CSF-venous fistulas.</p><p><strong>Materials and methods: </strong>We performed a retrospective review of all consecutive decubitus PCD-CTM between February 1, 2022, and August 1, 2024, at 1 institution. We included patients whose studies had the following reconstructions: Br48-40 keV virtual monoenergetic reconstruction, Br56 low-energy threshold (T3D), Qr89-T3D denoised with quantum iterative reconstruction, and Qr89-T3D denoised with a convolutional neural network algorithm. We excluded patients who had extradural CSF on preprocedural imaging or a technically unsatisfactory myelogram-. All 4 reconstructions were independently reviewed by 2 neuroradiologists. Each reviewer rated spatial resolution, noise, the presence of artifacts, image quality, and diagnostic confidence (whether positive or negative) on a 1-5 scale. These metrics were compared using the Friedman test. Additionally, noise and contrast were quantitatively assessed by a third reviewer and compared.</p><p><strong>Results: </strong>The Qr89 reconstructions demonstrated higher spatial resolution than their Br56 or Br48-40keV counterparts. Qr89 with convolutional neural network denoising had less noise, better image quality, and improved diagnostic confidence compared with Qr89 with quantum iterative reconstruction denoising. The Br48-40keV reconstruction had the highest contrast-to-noise ratio quantitatively.</p><p><strong>Conclusions: </strong>In our study, the sharpest quantitative kernel (Qr89-T3D) with convolutional neural network denoising demonstrated the best performance regarding spatial resolution, noise level, image quality, and diagnostic confidence for detecting or excluding the presence of a CSF-venous fistula.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Photon-Counting CT Myelography for the Detection of CSF-Venous Fistulas Using Convolutional Neural Network Denoising: A Comparative Analysis of Reconstruction Techniques.\",\"authors\":\"Ajay A Madhavan, Zhongxing Zhou, Paul J Farnsworth, Jamison Thorne, Timothy J Amrhein, Peter G Kranz, Waleed Brinjikji, Jeremy K Cutsforth-Gregory, Michelle L Kodet, Nikkole M Weber, Grace Thompson, Felix E Diehn, Lifeng Yu\",\"doi\":\"10.3174/ajnr.A8695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Photon-counting detector CT myelography (PCD-CTM) is a recently described technique used for detecting spinal CSF leaks, including CSF-venous fistulas. Various image reconstruction techniques, including smoother-versus-sharper kernels and virtual monoenergetic images, are available with photon-counting CT. Moreover, denoising algorithms have shown promise in improving sharp kernel images. No prior studies have compared image quality of these different reconstructions on photon-counting CT myelography. Here, we sought to compare several image reconstructions using various parameters important for the detection of CSF-venous fistulas.</p><p><strong>Materials and methods: </strong>We performed a retrospective review of all consecutive decubitus PCD-CTM between February 1, 2022, and August 1, 2024, at 1 institution. We included patients whose studies had the following reconstructions: Br48-40 keV virtual monoenergetic reconstruction, Br56 low-energy threshold (T3D), Qr89-T3D denoised with quantum iterative reconstruction, and Qr89-T3D denoised with a convolutional neural network algorithm. We excluded patients who had extradural CSF on preprocedural imaging or a technically unsatisfactory myelogram-. All 4 reconstructions were independently reviewed by 2 neuroradiologists. Each reviewer rated spatial resolution, noise, the presence of artifacts, image quality, and diagnostic confidence (whether positive or negative) on a 1-5 scale. These metrics were compared using the Friedman test. Additionally, noise and contrast were quantitatively assessed by a third reviewer and compared.</p><p><strong>Results: </strong>The Qr89 reconstructions demonstrated higher spatial resolution than their Br56 or Br48-40keV counterparts. Qr89 with convolutional neural network denoising had less noise, better image quality, and improved diagnostic confidence compared with Qr89 with quantum iterative reconstruction denoising. The Br48-40keV reconstruction had the highest contrast-to-noise ratio quantitatively.</p><p><strong>Conclusions: </strong>In our study, the sharpest quantitative kernel (Qr89-T3D) with convolutional neural network denoising demonstrated the best performance regarding spatial resolution, noise level, image quality, and diagnostic confidence for detecting or excluding the presence of a CSF-venous fistula.</p>\",\"PeriodicalId\":93863,\"journal\":{\"name\":\"AJNR. American journal of neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AJNR. American journal of neuroradiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3174/ajnr.A8695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Photon-Counting CT Myelography for the Detection of CSF-Venous Fistulas Using Convolutional Neural Network Denoising: A Comparative Analysis of Reconstruction Techniques.
Background and purpose: Photon-counting detector CT myelography (PCD-CTM) is a recently described technique used for detecting spinal CSF leaks, including CSF-venous fistulas. Various image reconstruction techniques, including smoother-versus-sharper kernels and virtual monoenergetic images, are available with photon-counting CT. Moreover, denoising algorithms have shown promise in improving sharp kernel images. No prior studies have compared image quality of these different reconstructions on photon-counting CT myelography. Here, we sought to compare several image reconstructions using various parameters important for the detection of CSF-venous fistulas.
Materials and methods: We performed a retrospective review of all consecutive decubitus PCD-CTM between February 1, 2022, and August 1, 2024, at 1 institution. We included patients whose studies had the following reconstructions: Br48-40 keV virtual monoenergetic reconstruction, Br56 low-energy threshold (T3D), Qr89-T3D denoised with quantum iterative reconstruction, and Qr89-T3D denoised with a convolutional neural network algorithm. We excluded patients who had extradural CSF on preprocedural imaging or a technically unsatisfactory myelogram-. All 4 reconstructions were independently reviewed by 2 neuroradiologists. Each reviewer rated spatial resolution, noise, the presence of artifacts, image quality, and diagnostic confidence (whether positive or negative) on a 1-5 scale. These metrics were compared using the Friedman test. Additionally, noise and contrast were quantitatively assessed by a third reviewer and compared.
Results: The Qr89 reconstructions demonstrated higher spatial resolution than their Br56 or Br48-40keV counterparts. Qr89 with convolutional neural network denoising had less noise, better image quality, and improved diagnostic confidence compared with Qr89 with quantum iterative reconstruction denoising. The Br48-40keV reconstruction had the highest contrast-to-noise ratio quantitatively.
Conclusions: In our study, the sharpest quantitative kernel (Qr89-T3D) with convolutional neural network denoising demonstrated the best performance regarding spatial resolution, noise level, image quality, and diagnostic confidence for detecting or excluding the presence of a CSF-venous fistula.