Vladislav Kim, Nikolaos Adaloglou, Marc Osterland, Flavio M Morelli, Marah Halawa, Tim König, David Gnutt, Paula A Marin Zapata
{"title":"自我监督通过解锁强大的图像表征来推进形态分析。","authors":"Vladislav Kim, Nikolaos Adaloglou, Marc Osterland, Flavio M Morelli, Marah Halawa, Tim König, David Gnutt, Paula A Marin Zapata","doi":"10.1038/s41598-025-88825-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cell Painting is an image-based assay that offers valuable insights into drug mechanisms of action and off-target effects. However, traditional feature extraction tools such as CellProfiler are computationally intensive and require frequent parameter adjustments. Inspired by recent advances in AI, we trained self-supervised learning (SSL) models DINO, MAE, and SimCLR on a subset of the JUMP Cell Painting dataset to obtain powerful representations for Cell Painting images. We assessed these SSL features for reproducibility, biological relevance, predictive power, and transferability to novel tasks and datasets. Our best model (DINO) surpassed CellProfiler in drug target and gene family classification, significantly reducing computational time and costs. DINO showed remarkable generalizability without fine-tuning, outperforming CellProfiler on an unseen dataset of genetic perturbations. In bioactivity prediction, DINO achieved comparable performance to models trained directly on Cell Painting images, with only a small gap between supervised and self-supervised approaches. Our study demonstrates the effectiveness of SSL methods for morphological profiling, suggesting promising research directions for improving the analysis of related image modalities.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4876"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-supervision advances morphological profiling by unlocking powerful image representations.\",\"authors\":\"Vladislav Kim, Nikolaos Adaloglou, Marc Osterland, Flavio M Morelli, Marah Halawa, Tim König, David Gnutt, Paula A Marin Zapata\",\"doi\":\"10.1038/s41598-025-88825-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell Painting is an image-based assay that offers valuable insights into drug mechanisms of action and off-target effects. However, traditional feature extraction tools such as CellProfiler are computationally intensive and require frequent parameter adjustments. Inspired by recent advances in AI, we trained self-supervised learning (SSL) models DINO, MAE, and SimCLR on a subset of the JUMP Cell Painting dataset to obtain powerful representations for Cell Painting images. We assessed these SSL features for reproducibility, biological relevance, predictive power, and transferability to novel tasks and datasets. Our best model (DINO) surpassed CellProfiler in drug target and gene family classification, significantly reducing computational time and costs. DINO showed remarkable generalizability without fine-tuning, outperforming CellProfiler on an unseen dataset of genetic perturbations. In bioactivity prediction, DINO achieved comparable performance to models trained directly on Cell Painting images, with only a small gap between supervised and self-supervised approaches. Our study demonstrates the effectiveness of SSL methods for morphological profiling, suggesting promising research directions for improving the analysis of related image modalities.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4876\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88825-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88825-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Self-supervision advances morphological profiling by unlocking powerful image representations.
Cell Painting is an image-based assay that offers valuable insights into drug mechanisms of action and off-target effects. However, traditional feature extraction tools such as CellProfiler are computationally intensive and require frequent parameter adjustments. Inspired by recent advances in AI, we trained self-supervised learning (SSL) models DINO, MAE, and SimCLR on a subset of the JUMP Cell Painting dataset to obtain powerful representations for Cell Painting images. We assessed these SSL features for reproducibility, biological relevance, predictive power, and transferability to novel tasks and datasets. Our best model (DINO) surpassed CellProfiler in drug target and gene family classification, significantly reducing computational time and costs. DINO showed remarkable generalizability without fine-tuning, outperforming CellProfiler on an unseen dataset of genetic perturbations. In bioactivity prediction, DINO achieved comparable performance to models trained directly on Cell Painting images, with only a small gap between supervised and self-supervised approaches. Our study demonstrates the effectiveness of SSL methods for morphological profiling, suggesting promising research directions for improving the analysis of related image modalities.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.