Liang Wang, Chengshi Yang, Dongfeng Yan, Lu Ye, Xi Chen, Shan Ma
{"title":"飞行训练对飞行学员脑结构的影响。","authors":"Liang Wang, Chengshi Yang, Dongfeng Yan, Lu Ye, Xi Chen, Shan Ma","doi":"10.1371/journal.pone.0313148","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the impact of professional training on brain structure has sparked extensive research interest. Research into pilots as a high-demand, high-load, and high-cost occupation holds significant academic and economic value. The aim of this study is to investigate the effects of flight training on the brain structure and cognitive functions of flying cadets. The structural magnetic resonance imaging (sMRI) data from 39 flying cadets and 37 general college students underwent analysis using voxel-based morphometry (VBM) and surface-based morphometry (SBM) methods to quantitatively detect and compute multiple indicators, including gray matter volume (GMV), curvature, mean curvature of the white matter surface (MC-WMS), the percentage of surface white matter gray matter (WM-GM percentage), surface Jacobi (S-Jacobi), and Gaussian curvature of white matter surface (GC-WMS). At the voxel level, the GMV in the left temporal pole: middle temporal gyrus region of flying cadets significantly decreased (Gaussian random field, GRF, P < 0.05). At the surface level, there was a significant increase in curvature, MC-WMS, and S-Jacobi in the lateral occipital region of flight cadets (Monte Carlo block level correction, MCBLC, P<0.05), a significant increase in WM-GM percentage in the cuneus region of flight cadets (MCBLC, P<0.05), and a significant increase in GC-WMS in the middle temporal region of flight cadets (MCBLC, P<0.05). In addition, these changes were correlated with behavioral tests. Research suggested that flight training might induce changes in certain brain regions of flying cadets, enabling them to adapt to evolving training content and environments, thereby enhancing their problem-solving and flight abilities. By analyzing multiple indicators at the voxel and surface levels in an integrated manner, it advances our understanding of brain structure, function, and plasticity, while also facilitating a more profound exploration of the neural mechanisms within the pilot's brain.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0313148"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809809/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effects of flight training on flying cadets' brain structure.\",\"authors\":\"Liang Wang, Chengshi Yang, Dongfeng Yan, Lu Ye, Xi Chen, Shan Ma\",\"doi\":\"10.1371/journal.pone.0313148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the impact of professional training on brain structure has sparked extensive research interest. Research into pilots as a high-demand, high-load, and high-cost occupation holds significant academic and economic value. The aim of this study is to investigate the effects of flight training on the brain structure and cognitive functions of flying cadets. The structural magnetic resonance imaging (sMRI) data from 39 flying cadets and 37 general college students underwent analysis using voxel-based morphometry (VBM) and surface-based morphometry (SBM) methods to quantitatively detect and compute multiple indicators, including gray matter volume (GMV), curvature, mean curvature of the white matter surface (MC-WMS), the percentage of surface white matter gray matter (WM-GM percentage), surface Jacobi (S-Jacobi), and Gaussian curvature of white matter surface (GC-WMS). At the voxel level, the GMV in the left temporal pole: middle temporal gyrus region of flying cadets significantly decreased (Gaussian random field, GRF, P < 0.05). At the surface level, there was a significant increase in curvature, MC-WMS, and S-Jacobi in the lateral occipital region of flight cadets (Monte Carlo block level correction, MCBLC, P<0.05), a significant increase in WM-GM percentage in the cuneus region of flight cadets (MCBLC, P<0.05), and a significant increase in GC-WMS in the middle temporal region of flight cadets (MCBLC, P<0.05). In addition, these changes were correlated with behavioral tests. Research suggested that flight training might induce changes in certain brain regions of flying cadets, enabling them to adapt to evolving training content and environments, thereby enhancing their problem-solving and flight abilities. By analyzing multiple indicators at the voxel and surface levels in an integrated manner, it advances our understanding of brain structure, function, and plasticity, while also facilitating a more profound exploration of the neural mechanisms within the pilot's brain.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 2\",\"pages\":\"e0313148\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0313148\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313148","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
近年来,专业训练对大脑结构的影响引起了广泛的研究兴趣。对飞行员这一高要求、高负荷、高成本职业的研究具有重要的学术和经济价值。摘要本研究旨在探讨飞行训练对飞行学员大脑结构及认知功能的影响。对39名飞行学员和37名普通大学生的结构磁共振成像(sMRI)数据进行分析,采用基于体素形态学(VBM)和基于表面形态学(SBM)方法,定量检测和计算脑灰质体积(GMV)、曲率、白质表面平均曲率(MC-WMS)、表面白质灰质百分比(WM-GM百分比)、表面雅可比(S-Jacobi)、和白质表面高斯曲率(GC-WMS)。在体素水平上,飞行学员左侧颞极颞中回区GMV显著降低(高斯随机场,GRF, P < 0.05)。在表面水平上,飞行学员枕侧区曲率、MC-WMS和S-Jacobi显著增加(蒙特卡洛块水平校正,MCBLC, P
The effects of flight training on flying cadets' brain structure.
In recent years, the impact of professional training on brain structure has sparked extensive research interest. Research into pilots as a high-demand, high-load, and high-cost occupation holds significant academic and economic value. The aim of this study is to investigate the effects of flight training on the brain structure and cognitive functions of flying cadets. The structural magnetic resonance imaging (sMRI) data from 39 flying cadets and 37 general college students underwent analysis using voxel-based morphometry (VBM) and surface-based morphometry (SBM) methods to quantitatively detect and compute multiple indicators, including gray matter volume (GMV), curvature, mean curvature of the white matter surface (MC-WMS), the percentage of surface white matter gray matter (WM-GM percentage), surface Jacobi (S-Jacobi), and Gaussian curvature of white matter surface (GC-WMS). At the voxel level, the GMV in the left temporal pole: middle temporal gyrus region of flying cadets significantly decreased (Gaussian random field, GRF, P < 0.05). At the surface level, there was a significant increase in curvature, MC-WMS, and S-Jacobi in the lateral occipital region of flight cadets (Monte Carlo block level correction, MCBLC, P<0.05), a significant increase in WM-GM percentage in the cuneus region of flight cadets (MCBLC, P<0.05), and a significant increase in GC-WMS in the middle temporal region of flight cadets (MCBLC, P<0.05). In addition, these changes were correlated with behavioral tests. Research suggested that flight training might induce changes in certain brain regions of flying cadets, enabling them to adapt to evolving training content and environments, thereby enhancing their problem-solving and flight abilities. By analyzing multiple indicators at the voxel and surface levels in an integrated manner, it advances our understanding of brain structure, function, and plasticity, while also facilitating a more profound exploration of the neural mechanisms within the pilot's brain.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage