结直肠癌细胞外泌体SphK1促进癌细胞迁移,激活肝星状细胞。

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-03-01 Epub Date: 2025-01-24 DOI:10.3892/mmr.2025.13438
Wenlu Zhang, Chunyan Xu
{"title":"结直肠癌细胞外泌体SphK1促进癌细胞迁移,激活肝星状细胞。","authors":"Wenlu Zhang, Chunyan Xu","doi":"10.3892/mmr.2025.13438","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are small extracellular vesicles that are naturally released into body fluids by cells. They are rich in bioactive molecules such as proteins. Sphingosine kinase 1 (SphK1) is an important potential drug target for the treatment of cancer due to its functions to regulate cancer cell migration, growth, apoptosis and angiogenesis. Tumor exosomes abundantly surround primary tumors, exchanging and transferring information between cells and modulating cancer progression. Given the importance of exosomes, the involvement of exosomal SphK1 from colorectal cancer (CRC) cells in the migration of these cells and the activation of hepatic stellate cells was investigated. Firstly, the plasma exosomal SphK1 protein expression, tested by ELISA, was compared between patients with CRC without metastasis and those with liver metastasis. The results revealed that plasma exosomal SphK1 levels were significantly upregulated in patients with liver metastasis of CRC. Secondly, exosomes with different expression levels of SphK1, which were regulated by cell transfection, were isolated from CRC cells to evaluate their effect on the expression levels of E‑cadherin and vimentin in these cells, as assessed by western blotting. The results demonstrated that depletion of exosomal SphK1 partially reversed the exosome‑induced migration of CRC cells, and caused decreased vimentin and increased E‑cadherin levels. Thirdly, the effects of exosomes from CRC cells, with different expression levels of SphK1, on hepatic stellate cell activation were investigated, with α‑SMA, TNF‑α and TGF‑β levels assessed by western blotting in LX‑2 cells. Moreover, AKT and phosphorylated (p‑)AKT levels were also assessed by western blotting. The results revealed that exosomes activated hepatic stellate cells by upregulating p‑AKT, and depletion of exosomal SphK1 partially reversed this effect. Furthermore, the application of an AKT agonist reversed the inhibition of hepatic stellate cell activation, which was induced by the depletion of exosomal SphK1. Finally, investigation of cell viability, analyzed by CCK‑8 assay, and assessment of PCNA as a proliferation marker, analyzed by western blot, revealed that the culture supernatant of the activated hepatic stellate cells promoted the viability of CRC cells. Overall, these results demonstrated that exosomal SphK1 increased the migration of CRC cells, and activated hepatic stellate cells by regulating p‑AKT. This suggests that exosomal SphK1 may serve a key role in the migration of CRC cells and potentially the liver metastasis of CRC.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795250/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosomal SphK1 from colorectal cancer cells promotes cancer cell migration and activates hepatic stellate cells.\",\"authors\":\"Wenlu Zhang, Chunyan Xu\",\"doi\":\"10.3892/mmr.2025.13438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are small extracellular vesicles that are naturally released into body fluids by cells. They are rich in bioactive molecules such as proteins. Sphingosine kinase 1 (SphK1) is an important potential drug target for the treatment of cancer due to its functions to regulate cancer cell migration, growth, apoptosis and angiogenesis. Tumor exosomes abundantly surround primary tumors, exchanging and transferring information between cells and modulating cancer progression. Given the importance of exosomes, the involvement of exosomal SphK1 from colorectal cancer (CRC) cells in the migration of these cells and the activation of hepatic stellate cells was investigated. Firstly, the plasma exosomal SphK1 protein expression, tested by ELISA, was compared between patients with CRC without metastasis and those with liver metastasis. The results revealed that plasma exosomal SphK1 levels were significantly upregulated in patients with liver metastasis of CRC. Secondly, exosomes with different expression levels of SphK1, which were regulated by cell transfection, were isolated from CRC cells to evaluate their effect on the expression levels of E‑cadherin and vimentin in these cells, as assessed by western blotting. The results demonstrated that depletion of exosomal SphK1 partially reversed the exosome‑induced migration of CRC cells, and caused decreased vimentin and increased E‑cadherin levels. Thirdly, the effects of exosomes from CRC cells, with different expression levels of SphK1, on hepatic stellate cell activation were investigated, with α‑SMA, TNF‑α and TGF‑β levels assessed by western blotting in LX‑2 cells. Moreover, AKT and phosphorylated (p‑)AKT levels were also assessed by western blotting. The results revealed that exosomes activated hepatic stellate cells by upregulating p‑AKT, and depletion of exosomal SphK1 partially reversed this effect. Furthermore, the application of an AKT agonist reversed the inhibition of hepatic stellate cell activation, which was induced by the depletion of exosomal SphK1. Finally, investigation of cell viability, analyzed by CCK‑8 assay, and assessment of PCNA as a proliferation marker, analyzed by western blot, revealed that the culture supernatant of the activated hepatic stellate cells promoted the viability of CRC cells. Overall, these results demonstrated that exosomal SphK1 increased the migration of CRC cells, and activated hepatic stellate cells by regulating p‑AKT. This suggests that exosomal SphK1 may serve a key role in the migration of CRC cells and potentially the liver metastasis of CRC.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13438\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13438","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

外泌体是细胞外的小囊泡,由细胞自然释放到体液中。它们富含蛋白质等生物活性分子。鞘氨酸激酶1 (SphK1)具有调节癌细胞迁移、生长、凋亡和血管生成等功能,是治疗癌症的重要潜在药物靶点。肿瘤外泌体大量围绕原发肿瘤,在细胞间交换和传递信息,调节肿瘤进展。考虑到外泌体的重要性,我们研究了来自结直肠癌(CRC)细胞的外泌体SphK1参与这些细胞的迁移和肝星状细胞的激活。首先,采用ELISA法比较无转移结直肠癌患者与肝转移结直肠癌患者血浆外泌体SphK1蛋白表达水平。结果显示,结直肠癌肝转移患者血浆外泌体SphK1水平显著上调。其次,从CRC细胞中分离出受细胞转染调控的具有不同SphK1表达水平的外泌体,通过western blotting评估其对这些细胞中E - cadherin和vimentin表达水平的影响。结果表明,外泌体SphK1的缺失部分逆转了外泌体诱导的CRC细胞迁移,并导致vimentin下降和E - cadherin水平升高。第三,研究了不同SphK1表达水平的CRC细胞外泌体对肝星状细胞活化的影响,并通过western blotting检测LX‑2细胞中α‑SMA、TNF‑α和TGF‑β水平。此外,AKT和磷酸化(p -)AKT水平也通过western blotting进行评估。结果显示,外泌体通过上调p - AKT激活肝星状细胞,而外泌体SphK1的缺失部分逆转了这一作用。此外,AKT激动剂的应用逆转了由外泌体SphK1缺失引起的肝星状细胞活化的抑制。最后,通过CCK - 8实验分析细胞活力,并通过western blot分析PCNA作为增殖标志物的评估,发现活化的肝星状细胞培养上清可促进CRC细胞的活力。总之,这些结果表明外泌体SphK1通过调节p - AKT增加了CRC细胞的迁移,并激活了肝星状细胞。这表明外泌体SphK1可能在结直肠癌细胞的迁移和结直肠癌的肝转移中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosomal SphK1 from colorectal cancer cells promotes cancer cell migration and activates hepatic stellate cells.

Exosomes are small extracellular vesicles that are naturally released into body fluids by cells. They are rich in bioactive molecules such as proteins. Sphingosine kinase 1 (SphK1) is an important potential drug target for the treatment of cancer due to its functions to regulate cancer cell migration, growth, apoptosis and angiogenesis. Tumor exosomes abundantly surround primary tumors, exchanging and transferring information between cells and modulating cancer progression. Given the importance of exosomes, the involvement of exosomal SphK1 from colorectal cancer (CRC) cells in the migration of these cells and the activation of hepatic stellate cells was investigated. Firstly, the plasma exosomal SphK1 protein expression, tested by ELISA, was compared between patients with CRC without metastasis and those with liver metastasis. The results revealed that plasma exosomal SphK1 levels were significantly upregulated in patients with liver metastasis of CRC. Secondly, exosomes with different expression levels of SphK1, which were regulated by cell transfection, were isolated from CRC cells to evaluate their effect on the expression levels of E‑cadherin and vimentin in these cells, as assessed by western blotting. The results demonstrated that depletion of exosomal SphK1 partially reversed the exosome‑induced migration of CRC cells, and caused decreased vimentin and increased E‑cadherin levels. Thirdly, the effects of exosomes from CRC cells, with different expression levels of SphK1, on hepatic stellate cell activation were investigated, with α‑SMA, TNF‑α and TGF‑β levels assessed by western blotting in LX‑2 cells. Moreover, AKT and phosphorylated (p‑)AKT levels were also assessed by western blotting. The results revealed that exosomes activated hepatic stellate cells by upregulating p‑AKT, and depletion of exosomal SphK1 partially reversed this effect. Furthermore, the application of an AKT agonist reversed the inhibition of hepatic stellate cell activation, which was induced by the depletion of exosomal SphK1. Finally, investigation of cell viability, analyzed by CCK‑8 assay, and assessment of PCNA as a proliferation marker, analyzed by western blot, revealed that the culture supernatant of the activated hepatic stellate cells promoted the viability of CRC cells. Overall, these results demonstrated that exosomal SphK1 increased the migration of CRC cells, and activated hepatic stellate cells by regulating p‑AKT. This suggests that exosomal SphK1 may serve a key role in the migration of CRC cells and potentially the liver metastasis of CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信