金的氢吸附和性质:第一性原理研究。

IF 2.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Natalya Sheremetyeva, Vincent Meunier
{"title":"金的氢吸附和性质:第一性原理研究。","authors":"Natalya Sheremetyeva, Vincent Meunier","doi":"10.1088/1361-648X/adb471","DOIUrl":null,"url":null,"abstract":"<p><p>Goldene, a single-atom Au monolayer with a hexagonal lattice in the P6/mmm space group, exhibits interesting hyrdrogen absorption properties, as revealed using density functional theory calculations. This study focuses on H-adsorbed goldene at different coverage ratios, and provides insights into the energetic and electronic properties of this system, distinguishing it from the well-studied pristine goldene. Hydrogen adsorption on goldene, while energetically comparable to bulk gold, shows a slight reduction in energetic favorability and introduces specific scanning tunneling microscopy images, reported here for the first time. Raman spectra of H-adsorbed goldene at a 1/9 coverage ratio are also first reported here, along with a vibrational mode analysis, highlighting distinct atomic displacement patterns. Finally, for completeness, previously reported results on the dynamical and mechanical stability of pristine goldene are reported, with a special emphasis on the quadratic flexural mode characteristic of 2D materials. New insights into the thermodynamic properties of goldene compared to bulk gold are also discussed. Although bulk gold remains thermodynamically more stable at all temperatures, the vibrational contributions to the Helmholtz free energy favor goldene above 175 K, narrowing the stability gap with temperature. Overall, this study validates goldene's robustness and expands its potential for experimental and theoretical exploration in the context of hydrogen adsorption and functionalized 2D materials more broadly.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen adsorption and properties of goldene: a first-principles study.\",\"authors\":\"Natalya Sheremetyeva, Vincent Meunier\",\"doi\":\"10.1088/1361-648X/adb471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Goldene, a single-atom Au monolayer with a hexagonal lattice in the P6/mmm space group, exhibits interesting hyrdrogen absorption properties, as revealed using density functional theory calculations. This study focuses on H-adsorbed goldene at different coverage ratios, and provides insights into the energetic and electronic properties of this system, distinguishing it from the well-studied pristine goldene. Hydrogen adsorption on goldene, while energetically comparable to bulk gold, shows a slight reduction in energetic favorability and introduces specific scanning tunneling microscopy images, reported here for the first time. Raman spectra of H-adsorbed goldene at a 1/9 coverage ratio are also first reported here, along with a vibrational mode analysis, highlighting distinct atomic displacement patterns. Finally, for completeness, previously reported results on the dynamical and mechanical stability of pristine goldene are reported, with a special emphasis on the quadratic flexural mode characteristic of 2D materials. New insights into the thermodynamic properties of goldene compared to bulk gold are also discussed. Although bulk gold remains thermodynamically more stable at all temperatures, the vibrational contributions to the Helmholtz free energy favor goldene above 175 K, narrowing the stability gap with temperature. Overall, this study validates goldene's robustness and expands its potential for experimental and theoretical exploration in the context of hydrogen adsorption and functionalized 2D materials more broadly.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adb471\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb471","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论(DFT)计算发现,金是一种P6/mmm空间群中具有六边形晶格的单原子金单层,具有有趣的吸氢特性。本研究重点研究了不同覆盖比下的h吸附金,并提供了该体系的能量和电子性质的见解,将其与已经得到充分研究的原始金区分开来。氢吸附在金上,虽然能量上与大块金相当,但表现出能量有利度的轻微降低,但引入了特定的扫描隧道显微镜(STM)图像,这是第一次在这里报道。本文还报道了h吸附金在1/9覆盖比下的拉曼光谱,以及振动模式分析,突出了该体系中不同的原子位移模式。最后,为了完整性,报告了先前报道的关于原始黄金的动态和机械稳定性的结果,特别强调了二维材料的二次弯曲模态特征。与大块金相比,金的热力学性质也有了新的见解。尽管大块金在所有温度下热力学上都更稳定,但振动对亥姆霍兹自由能的贡献有利于175K以上的金,从而缩小了随温度变化的稳定性差距。总体而言,本研究验证了黄金的稳健性,并扩大了其在氢吸附和功能化二维材料方面的实验和理论探索潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen adsorption and properties of goldene: a first-principles study.

Goldene, a single-atom Au monolayer with a hexagonal lattice in the P6/mmm space group, exhibits interesting hyrdrogen absorption properties, as revealed using density functional theory calculations. This study focuses on H-adsorbed goldene at different coverage ratios, and provides insights into the energetic and electronic properties of this system, distinguishing it from the well-studied pristine goldene. Hydrogen adsorption on goldene, while energetically comparable to bulk gold, shows a slight reduction in energetic favorability and introduces specific scanning tunneling microscopy images, reported here for the first time. Raman spectra of H-adsorbed goldene at a 1/9 coverage ratio are also first reported here, along with a vibrational mode analysis, highlighting distinct atomic displacement patterns. Finally, for completeness, previously reported results on the dynamical and mechanical stability of pristine goldene are reported, with a special emphasis on the quadratic flexural mode characteristic of 2D materials. New insights into the thermodynamic properties of goldene compared to bulk gold are also discussed. Although bulk gold remains thermodynamically more stable at all temperatures, the vibrational contributions to the Helmholtz free energy favor goldene above 175 K, narrowing the stability gap with temperature. Overall, this study validates goldene's robustness and expands its potential for experimental and theoretical exploration in the context of hydrogen adsorption and functionalized 2D materials more broadly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信