一氧化氮是一种不可逆的人二胺氧化酶抑制剂。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-02-01 Epub Date: 2025-03-08 DOI:10.1080/10715762.2025.2465277
Felix Kosta, Elisabeth Gludovacz, Rudolf Figl, Nicole Borth, Bernd Jilma, Thomas Boehm
{"title":"一氧化氮是一种不可逆的人二胺氧化酶抑制剂。","authors":"Felix Kosta, Elisabeth Gludovacz, Rudolf Figl, Nicole Borth, Bernd Jilma, Thomas Boehm","doi":"10.1080/10715762.2025.2465277","DOIUrl":null,"url":null,"abstract":"<p><p>Diamine oxidase (DAO) histamine-degradation rates are compromised in plasma of mastocytosis patients during severe mast cell activation events. Mast cell-liberated histamine induces the release of nitric oxide (NO) close to DAO extracellular storage sites. We hypothesized that NO inhibits DAO activity. Recombinant human DAO activity was measured after incubation with NO-releasing NONOates (R<sup>1</sup>R<sup>2</sup>N-(NO<sup>-</sup>)-N = O). Topaquinone reactivity was quantified by absorption measurements and by mass spectrometry. Several murine models of NO-production were assessed for DAO activity inhibition <i>in vivo</i>. Nitric oxide released from NONOates dose dependently and irreversibly inhibited DAO activity. The NO scavengers Trolox (Vitamin E derivative) and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), the reversible DAO inhibitors diminazene and ciproxifan, the substrates histamine (EC<sub>50</sub> = 32 µM) and putrescine (EC<sub>50</sub> = 39 µM), heparin whole blood and plasma protected DAO from inhibition. Nitric oxide reduced the reactivity of topaquinone to phenylhydrazine by 90%. None of the NO producing <i>in vivo</i> models showed DAO inhibition in plasma or tissue. Nitric oxide is a potent irreversible DAO inhibitor <i>in vitro</i> representing the first discovered natural inhibitor for this enzyme. Endogenous mouse DAO inhibition <i>in vivo</i> could not be demonstrated. The true nature of human DAO activity inhibition during severe mastocytosis events remains unknown.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"138-151"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitric oxide is an irreversible human diamine oxidase inhibitor.\",\"authors\":\"Felix Kosta, Elisabeth Gludovacz, Rudolf Figl, Nicole Borth, Bernd Jilma, Thomas Boehm\",\"doi\":\"10.1080/10715762.2025.2465277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diamine oxidase (DAO) histamine-degradation rates are compromised in plasma of mastocytosis patients during severe mast cell activation events. Mast cell-liberated histamine induces the release of nitric oxide (NO) close to DAO extracellular storage sites. We hypothesized that NO inhibits DAO activity. Recombinant human DAO activity was measured after incubation with NO-releasing NONOates (R<sup>1</sup>R<sup>2</sup>N-(NO<sup>-</sup>)-N = O). Topaquinone reactivity was quantified by absorption measurements and by mass spectrometry. Several murine models of NO-production were assessed for DAO activity inhibition <i>in vivo</i>. Nitric oxide released from NONOates dose dependently and irreversibly inhibited DAO activity. The NO scavengers Trolox (Vitamin E derivative) and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), the reversible DAO inhibitors diminazene and ciproxifan, the substrates histamine (EC<sub>50</sub> = 32 µM) and putrescine (EC<sub>50</sub> = 39 µM), heparin whole blood and plasma protected DAO from inhibition. Nitric oxide reduced the reactivity of topaquinone to phenylhydrazine by 90%. None of the NO producing <i>in vivo</i> models showed DAO inhibition in plasma or tissue. Nitric oxide is a potent irreversible DAO inhibitor <i>in vitro</i> representing the first discovered natural inhibitor for this enzyme. Endogenous mouse DAO inhibition <i>in vivo</i> could not be demonstrated. The true nature of human DAO activity inhibition during severe mastocytosis events remains unknown.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"138-151\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2465277\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2465277","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的肥大细胞增多症患者血浆中二胺氧化酶(DAO)组胺降解率在严重肥大细胞活化事件中受到影响。肥大细胞释放的组胺诱导一氧化氮(NO)在DAO细胞外储存位点附近释放。我们假设NO抑制DAO活性。方法用释放NO的NONOates (R1R2N-(NO-)- n = O)孵育后测定重组人DAO活性。用吸收法和质谱法测定了托喹酮的反应性。几种小鼠模型在体内对DAO活性的抑制进行了评估。结果nooates释放的一氧化氮具有剂量依赖性和不可逆抑制DAO活性。NO清除剂Trolox(维生素E衍生物)和2-(4- carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO)、可逆DAO抑制剂diminazene和ciproxifan、底物组胺(EC50 = 32µM)和腐胺(EC50 = 39µM)、肝素、全血和血浆均可保护DAO免受抑制。一氧化氮使托喹酮对苯肼的反应活性降低了90%。体内NO生成模型均未在血浆或组织中显示DAO抑制。结论一氧化氮是体外有效的不可逆DAO抑制剂,是首次发现的该酶的天然抑制剂。内源性小鼠体内DAO抑制未被证实。在严重肥大细胞增多症事件中,人类DAO活性抑制的真实性质尚不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitric oxide is an irreversible human diamine oxidase inhibitor.

Diamine oxidase (DAO) histamine-degradation rates are compromised in plasma of mastocytosis patients during severe mast cell activation events. Mast cell-liberated histamine induces the release of nitric oxide (NO) close to DAO extracellular storage sites. We hypothesized that NO inhibits DAO activity. Recombinant human DAO activity was measured after incubation with NO-releasing NONOates (R1R2N-(NO-)-N = O). Topaquinone reactivity was quantified by absorption measurements and by mass spectrometry. Several murine models of NO-production were assessed for DAO activity inhibition in vivo. Nitric oxide released from NONOates dose dependently and irreversibly inhibited DAO activity. The NO scavengers Trolox (Vitamin E derivative) and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), the reversible DAO inhibitors diminazene and ciproxifan, the substrates histamine (EC50 = 32 µM) and putrescine (EC50 = 39 µM), heparin whole blood and plasma protected DAO from inhibition. Nitric oxide reduced the reactivity of topaquinone to phenylhydrazine by 90%. None of the NO producing in vivo models showed DAO inhibition in plasma or tissue. Nitric oxide is a potent irreversible DAO inhibitor in vitro representing the first discovered natural inhibitor for this enzyme. Endogenous mouse DAO inhibition in vivo could not be demonstrated. The true nature of human DAO activity inhibition during severe mastocytosis events remains unknown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信