铁离子参与6-羟多巴胺诱导的细胞内铜代谢的破坏。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-02-01 Epub Date: 2025-02-15 DOI:10.1080/10715762.2025.2465276
Ami Kato, Ayano Tani, Fuka Kamijo, Tomohiro Otsuka, Tetsuro Kamiya, Hirokazu Hara
{"title":"铁离子参与6-羟多巴胺诱导的细胞内铜代谢的破坏。","authors":"Ami Kato, Ayano Tani, Fuka Kamijo, Tomohiro Otsuka, Tetsuro Kamiya, Hirokazu Hara","doi":"10.1080/10715762.2025.2465276","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"129-137"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of iron ions in 6-hydroxydopamine-induced disruption of intracellular copper metabolism.\",\"authors\":\"Ami Kato, Ayano Tani, Fuka Kamijo, Tomohiro Otsuka, Tetsuro Kamiya, Hirokazu Hara\",\"doi\":\"10.1080/10715762.2025.2465276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"129-137\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2465276\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2465276","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种以黑质多巴胺能神经元丧失为特征的神经退行性疾病。最近,包括铜(Cu)和铁(Fe)在内的金属代谢紊乱已被报道与PD的发病机制有关。我们之前证明了6-羟基羟多巴胺(6-OHDA),一种用于PD模型动物生产的神经毒素,可以降低Atox1 (Cu伴侣)和ATP7A (Cu转运体),并破坏人类神经母细胞瘤SH-SY5Y细胞内的Cu代谢。然而,确切的机制尚不清楚。同时,胞内铁调节6-羟多巴胺诱导的细胞反应。在本研究中,我们研究了铁是否参与6-羟多巴胺诱导的铜代谢异常。铁螯合剂、去铁胺和2,2′-联吡啶(BIP)可抑制6- ohda诱导的活性氧(ROS)产生和细胞损伤。这些螯合剂还恢复了6-OHDA诱导的Atox1和ATP7A蛋白降解和随后的Cu积累,表明细胞内铁参与了与6-OHDA相关的Cu稳态的破坏。Atox1在其cu结合位点具有氧化还原敏感的半胱氨酸(Cys)残基。Atox1的Cys残基被6-OHDA氧化,而BIP抑制了它们的氧化。此外,在cu结合位点用组氨酸取代Cys可抵抗6- ohda诱导的Atox1降解。这些结果表明,6-OHDA对Atox1的氧化修饰可能会加速其降解。因此,我们认为铁和铜的代谢在PD的发病机制中是密切相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Involvement of iron ions in 6-hydroxydopamine-induced disruption of intracellular copper metabolism.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信