混合铁磁金属/量子点/拓扑绝缘体结的自旋相关热电特性。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Piotr Trocha
{"title":"混合铁磁金属/量子点/拓扑绝缘体结的自旋相关热电特性。","authors":"Piotr Trocha","doi":"10.1038/s41598-025-87931-7","DOIUrl":null,"url":null,"abstract":"<p><p>The thermoelectric properties of hybrid system based on a single-level quantum dot coupled to a ferromagnetic metallic lead and attached to the surface states of a three-dimensional topological insulator are theoretically investigated. On the surface of a three-dimensional topological insulator, massless helical Dirac fermions emerge. We calculate the thermoelectric coefficients, including electrical conductance, Seebeck coefficient (thermopower), heat conductance, and the figure of merit, using the nonequilibrium Green's function technique. The results are analyzed in terms of the emergence of new effects. The calculations are performed within the Hubbard I approximation concerning the dot's Coulomb interactions. Additionally, the spin-dependent coupling of the quantum dot to the ferromagnetic lead lifts the spin degeneracy of the dot's level, which influences the transport properties of the system. We incorporate this effect perturbatively to obtain the spin-dependent renormalization of the dot's level. We also consider the case of finite spin accumulation in the ferromagnetic electrode, which leads to spin thermoelectric effects.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4904"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spin-dependent thermoelectric properties of a hybrid ferromagnetic metal/quantum dot/topological insulator junction.\",\"authors\":\"Piotr Trocha\",\"doi\":\"10.1038/s41598-025-87931-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermoelectric properties of hybrid system based on a single-level quantum dot coupled to a ferromagnetic metallic lead and attached to the surface states of a three-dimensional topological insulator are theoretically investigated. On the surface of a three-dimensional topological insulator, massless helical Dirac fermions emerge. We calculate the thermoelectric coefficients, including electrical conductance, Seebeck coefficient (thermopower), heat conductance, and the figure of merit, using the nonequilibrium Green's function technique. The results are analyzed in terms of the emergence of new effects. The calculations are performed within the Hubbard I approximation concerning the dot's Coulomb interactions. Additionally, the spin-dependent coupling of the quantum dot to the ferromagnetic lead lifts the spin degeneracy of the dot's level, which influences the transport properties of the system. We incorporate this effect perturbatively to obtain the spin-dependent renormalization of the dot's level. We also consider the case of finite spin accumulation in the ferromagnetic electrode, which leads to spin thermoelectric effects.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4904\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87931-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87931-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从理论上研究了单能级量子点与铁磁性金属铅耦合并附着于三维拓扑绝缘体表面态的混合系统的热电特性。在三维拓扑绝缘体表面,无质量螺旋狄拉克费米子出现。我们使用非平衡格林函数技术计算热电系数,包括电导、塞贝克系数(热功率)、热传导和优值。根据新效应的出现对结果进行了分析。计算是在关于点的库仑相互作用的Hubbard I近似内进行的。此外,量子点与铁磁引线的自旋依赖耦合提高了量子点能级的自旋简并度,从而影响了系统的输运性质。我们将这种效应摄动地结合起来,以获得点能级的自旋相关重整化。我们还考虑了铁磁电极中有限自旋积累导致自旋热电效应的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-dependent thermoelectric properties of a hybrid ferromagnetic metal/quantum dot/topological insulator junction.

The thermoelectric properties of hybrid system based on a single-level quantum dot coupled to a ferromagnetic metallic lead and attached to the surface states of a three-dimensional topological insulator are theoretically investigated. On the surface of a three-dimensional topological insulator, massless helical Dirac fermions emerge. We calculate the thermoelectric coefficients, including electrical conductance, Seebeck coefficient (thermopower), heat conductance, and the figure of merit, using the nonequilibrium Green's function technique. The results are analyzed in terms of the emergence of new effects. The calculations are performed within the Hubbard I approximation concerning the dot's Coulomb interactions. Additionally, the spin-dependent coupling of the quantum dot to the ferromagnetic lead lifts the spin degeneracy of the dot's level, which influences the transport properties of the system. We incorporate this effect perturbatively to obtain the spin-dependent renormalization of the dot's level. We also consider the case of finite spin accumulation in the ferromagnetic electrode, which leads to spin thermoelectric effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信