阿那格列特在啮齿动物体内皮下给药的药动学特征和体内抗癌效果。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-02-10 DOI:10.1080/10717544.2025.2463433
Kirsi Toivanen, Luna De Sutter, Agnieszka Wozniak, Karo Wyns, Nanna Merikoski, Sami Salmikangas, Jianmin Duan, Mikael Maksimow, Maria Lahtinen, Tom Böhling, Patrick Schöffski, Harri Sihto
{"title":"阿那格列特在啮齿动物体内皮下给药的药动学特征和体内抗癌效果。","authors":"Kirsi Toivanen, Luna De Sutter, Agnieszka Wozniak, Karo Wyns, Nanna Merikoski, Sami Salmikangas, Jianmin Duan, Mikael Maksimow, Maria Lahtinen, Tom Böhling, Patrick Schöffski, Harri Sihto","doi":"10.1080/10717544.2025.2463433","DOIUrl":null,"url":null,"abstract":"<p><p>Anagrelide (ANA) is a phosphodiesterase 3A (PDE3A) inhibitor, commonly prescribed for essential thrombocythemia. It also functions as a molecular glue, inducing complex formation between PDE3A and Schlafen 12. This association either triggers apoptosis or inhibits proliferation in tumor cells, supporting its use in cancer therapy. Conventionally administered orally, ANA undergoes rapid metabolism and elimination, resulting in a short drug exposure time at the site of action. Here, we explored the pharmacokinetic profile of a subcutaneously (SC) injected ANA formulation in Sprague-Dawley rats by quantifying plasma ANA and metabolite concentrations using liquid-chromatography-tandem mass spectrometry. We further evaluated the <i>in vivo</i> tumor regression efficacy of orally and SC administered ANA in a patient-derived gastrointestinal stromal xenograft mouse model - UZLX-GIST2B - characterized by a <i>KIT</i> exon 9 driver mutation. The SC ANA exhibited extended-release plasma concentration-time profiles compared to intravenous and oral administrations. After a single administration in rats, plasma concentrations of ANA were detected up to 56 days later, and ANA metabolites up to 30 days later. The SC formulation also significantly reduced tumor volumes and demonstrated dose-dependent histological responses, nearly eradicating tumor tissue in 11 days with the highest dose. These findings suggest that the SC slow-release formulation maintains stable drug concentrations during treatment, potentially improving therapeutic efficacy at the target site.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2463433"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816618/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetic profile and <i>in vivo</i> anticancer efficacy of anagrelide administered subcutaneously in rodents.\",\"authors\":\"Kirsi Toivanen, Luna De Sutter, Agnieszka Wozniak, Karo Wyns, Nanna Merikoski, Sami Salmikangas, Jianmin Duan, Mikael Maksimow, Maria Lahtinen, Tom Böhling, Patrick Schöffski, Harri Sihto\",\"doi\":\"10.1080/10717544.2025.2463433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anagrelide (ANA) is a phosphodiesterase 3A (PDE3A) inhibitor, commonly prescribed for essential thrombocythemia. It also functions as a molecular glue, inducing complex formation between PDE3A and Schlafen 12. This association either triggers apoptosis or inhibits proliferation in tumor cells, supporting its use in cancer therapy. Conventionally administered orally, ANA undergoes rapid metabolism and elimination, resulting in a short drug exposure time at the site of action. Here, we explored the pharmacokinetic profile of a subcutaneously (SC) injected ANA formulation in Sprague-Dawley rats by quantifying plasma ANA and metabolite concentrations using liquid-chromatography-tandem mass spectrometry. We further evaluated the <i>in vivo</i> tumor regression efficacy of orally and SC administered ANA in a patient-derived gastrointestinal stromal xenograft mouse model - UZLX-GIST2B - characterized by a <i>KIT</i> exon 9 driver mutation. The SC ANA exhibited extended-release plasma concentration-time profiles compared to intravenous and oral administrations. After a single administration in rats, plasma concentrations of ANA were detected up to 56 days later, and ANA metabolites up to 30 days later. The SC formulation also significantly reduced tumor volumes and demonstrated dose-dependent histological responses, nearly eradicating tumor tissue in 11 days with the highest dose. These findings suggest that the SC slow-release formulation maintains stable drug concentrations during treatment, potentially improving therapeutic efficacy at the target site.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2463433\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2025.2463433\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2463433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

Anagrelide (ANA)是一种磷酸二酯酶3A (PDE3A)抑制剂,通常用于治疗原发性血小板增多症。它还起到分子胶的作用,诱导PDE3A和Schlafen 12之间形成复合物。这种关联触发肿瘤细胞凋亡或抑制肿瘤细胞增殖,支持其在癌症治疗中的应用。常规口服给药,ANA经历快速代谢和消除,导致在作用部位的药物暴露时间短。在这里,我们通过液相色谱-串联质谱法定量血浆ANA和代谢物浓度,探讨了Sprague-Dawley大鼠皮下注射ANA制剂的药代动力学特征。我们进一步评估了口服和SC给药ANA在患者来源的胃肠道间质异种移植小鼠模型- UZLX-GIST2B中的体内肿瘤消退效果,该模型以KIT外显子9驱动突变为特征。与静脉和口服给药相比,SC ANA表现出缓释血浆浓度-时间分布。大鼠单次给药后,56天后检测ANA的血浆浓度,30天后检测ANA的代谢物。SC制剂还显着减少肿瘤体积,并表现出剂量依赖性的组织学反应,在最高剂量下11天内几乎根除肿瘤组织。这些发现表明,SC缓释制剂在治疗过程中保持稳定的药物浓度,可能提高靶部位的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacokinetic profile and in vivo anticancer efficacy of anagrelide administered subcutaneously in rodents.

Anagrelide (ANA) is a phosphodiesterase 3A (PDE3A) inhibitor, commonly prescribed for essential thrombocythemia. It also functions as a molecular glue, inducing complex formation between PDE3A and Schlafen 12. This association either triggers apoptosis or inhibits proliferation in tumor cells, supporting its use in cancer therapy. Conventionally administered orally, ANA undergoes rapid metabolism and elimination, resulting in a short drug exposure time at the site of action. Here, we explored the pharmacokinetic profile of a subcutaneously (SC) injected ANA formulation in Sprague-Dawley rats by quantifying plasma ANA and metabolite concentrations using liquid-chromatography-tandem mass spectrometry. We further evaluated the in vivo tumor regression efficacy of orally and SC administered ANA in a patient-derived gastrointestinal stromal xenograft mouse model - UZLX-GIST2B - characterized by a KIT exon 9 driver mutation. The SC ANA exhibited extended-release plasma concentration-time profiles compared to intravenous and oral administrations. After a single administration in rats, plasma concentrations of ANA were detected up to 56 days later, and ANA metabolites up to 30 days later. The SC formulation also significantly reduced tumor volumes and demonstrated dose-dependent histological responses, nearly eradicating tumor tissue in 11 days with the highest dose. These findings suggest that the SC slow-release formulation maintains stable drug concentrations during treatment, potentially improving therapeutic efficacy at the target site.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信