视网膜色素上皮细胞的脱膜小体和半脱膜小体分解:与外泌体途径的交叉

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Mikael Klingeborn, Emily D Reese
{"title":"视网膜色素上皮细胞的脱膜小体和半脱膜小体分解:与外泌体途径的交叉","authors":"Mikael Klingeborn, Emily D Reese","doi":"10.1007/978-3-031-76550-6_56","DOIUrl":null,"url":null,"abstract":"<p><p>The retinal pigmented epithelium (RPE) forms the outer blood-retinal barrier, and like other epithelia it has several different types of cell-cell junctions, such as desmosomes. The RPE provides key metabolic and nutrient support to photoreceptors and the function of normal vision. The RPE is a principal location of disease-associated changes in age-related macular degeneration (AMD), due to its essential role in visual homeostasis. There are no robust early indicators of AMD or disease progression, a need that could be filled by the development of early AMD biomarkers. Exosomes are lipid bilayer membrane vesicles of nanometer sizes that are released via a dedicated machinery by all cells and carry out a multitude of functions related to cellular signaling and waste management. In the RPE, they are released from both the apical and basal sides, and the cargo composition reflects this polarization. We have recently shown that exosomes released from the basolateral side of RPE cells under chronic oxidative stress conditions contain desmosome and hemidesmosome proteins. Here we discuss the composition of desmosomes and hemidesmosomes in the RPE, and the potential of these exosome-associated components as biomarkers of early RPE dysfunction preceding AMD symptoms detectable in the current clinical setting. How cargo loading into basolateral exosomes is controlled in polarized epithelia such as RPE, is also discussed.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1468 ","pages":"339-343"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desmosome and Hemidesmosome Disassembly in Retinal Pigmented Epithelium: Intersection with the Exosome Pathway.\",\"authors\":\"Mikael Klingeborn, Emily D Reese\",\"doi\":\"10.1007/978-3-031-76550-6_56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The retinal pigmented epithelium (RPE) forms the outer blood-retinal barrier, and like other epithelia it has several different types of cell-cell junctions, such as desmosomes. The RPE provides key metabolic and nutrient support to photoreceptors and the function of normal vision. The RPE is a principal location of disease-associated changes in age-related macular degeneration (AMD), due to its essential role in visual homeostasis. There are no robust early indicators of AMD or disease progression, a need that could be filled by the development of early AMD biomarkers. Exosomes are lipid bilayer membrane vesicles of nanometer sizes that are released via a dedicated machinery by all cells and carry out a multitude of functions related to cellular signaling and waste management. In the RPE, they are released from both the apical and basal sides, and the cargo composition reflects this polarization. We have recently shown that exosomes released from the basolateral side of RPE cells under chronic oxidative stress conditions contain desmosome and hemidesmosome proteins. Here we discuss the composition of desmosomes and hemidesmosomes in the RPE, and the potential of these exosome-associated components as biomarkers of early RPE dysfunction preceding AMD symptoms detectable in the current clinical setting. How cargo loading into basolateral exosomes is controlled in polarized epithelia such as RPE, is also discussed.</p>\",\"PeriodicalId\":7270,\"journal\":{\"name\":\"Advances in experimental medicine and biology\",\"volume\":\"1468 \",\"pages\":\"339-343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in experimental medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-76550-6_56\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-76550-6_56","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

视网膜色素上皮(RPE)形成外血-视网膜屏障,像其他上皮一样,它有几种不同类型的细胞-细胞连接,如桥粒。RPE为光感受器和正常视觉功能提供关键的代谢和营养支持。RPE是年龄相关性黄斑变性(AMD)疾病相关变化的主要部位,因为它在视觉稳态中起着重要作用。目前还没有可靠的AMD或疾病进展的早期指标,这一需求可以通过开发早期AMD生物标志物来填补。外泌体是一种纳米大小的脂质双层膜囊泡,通过一种专门的机制被所有细胞释放,并执行与细胞信号传导和废物管理相关的多种功能。在RPE中,它们从顶侧和基侧释放,并且货物组成反映了这种极化。我们最近发现,慢性氧化应激条件下RPE细胞基底外侧释放的外泌体含有桥粒和半桥粒蛋白。在这里,我们讨论了RPE中桥粒和半桥粒的组成,以及这些外泌体相关成分作为早期RPE功能障碍的生物标志物的潜力,这些生物标志物在当前临床环境中可检测到AMD症状。还讨论了极化上皮(如RPE)如何控制向基底外侧外泌体装载的货物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Desmosome and Hemidesmosome Disassembly in Retinal Pigmented Epithelium: Intersection with the Exosome Pathway.

The retinal pigmented epithelium (RPE) forms the outer blood-retinal barrier, and like other epithelia it has several different types of cell-cell junctions, such as desmosomes. The RPE provides key metabolic and nutrient support to photoreceptors and the function of normal vision. The RPE is a principal location of disease-associated changes in age-related macular degeneration (AMD), due to its essential role in visual homeostasis. There are no robust early indicators of AMD or disease progression, a need that could be filled by the development of early AMD biomarkers. Exosomes are lipid bilayer membrane vesicles of nanometer sizes that are released via a dedicated machinery by all cells and carry out a multitude of functions related to cellular signaling and waste management. In the RPE, they are released from both the apical and basal sides, and the cargo composition reflects this polarization. We have recently shown that exosomes released from the basolateral side of RPE cells under chronic oxidative stress conditions contain desmosome and hemidesmosome proteins. Here we discuss the composition of desmosomes and hemidesmosomes in the RPE, and the potential of these exosome-associated components as biomarkers of early RPE dysfunction preceding AMD symptoms detectable in the current clinical setting. How cargo loading into basolateral exosomes is controlled in polarized epithelia such as RPE, is also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信