急性髓系白血病-成骨细胞相互作用介导的自噬诱导对阿糖胞苷诱导的细胞凋亡的保护作用

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kamini Shivhare, Neeraj Kumar Satija
{"title":"急性髓系白血病-成骨细胞相互作用介导的自噬诱导对阿糖胞苷诱导的细胞凋亡的保护作用","authors":"Kamini Shivhare,&nbsp;Neeraj Kumar Satija","doi":"10.1002/cbf.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>High rate of relapse, following chemotherapy, in acute myeloid leukemia (AML) is a major concern. The chemoprotection conferred by the bone marrow microenvironment has lately been recognized, in addition to autophagy-mediated chemoresistance. Thus, the present study explored the effect of osteoblast on autophagy in AML and its impact on sensitivity to cytarabine (Ara-C) in the context of endosteal niche. Co-culture of KG1-a, HL60, or THP-1 AML cells with osteoblastic Saos-2 cell line induced autophagy in AML cell lines under direct contact. HL60 cells when co-culture with Saos-2 demonstrated more resistance to Ara-C induced apoptosis, which was reversed upon chloroquine treatment. Similarly, inhibition of autophagy in AML cell by knocking down Beclin-1 enhanced HL60 sensitivity to Ara-C. An interesting observation was upregulation of autophagy even in Saos-2 cells upon co-culture with AML cell, and increase in HL60 apoptosis in response to Ara-C on Beclin-1 knockdown in osteoblast cell. This highlights that autophagy plays a chemoprotective role in the endosteal niche in AML against Ara-C.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute Myeloid Leukemia-Osteoblast Interaction Mediated Autophagy Induction Protects Against Cytarabine Induced Apoptosis\",\"authors\":\"Kamini Shivhare,&nbsp;Neeraj Kumar Satija\",\"doi\":\"10.1002/cbf.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>High rate of relapse, following chemotherapy, in acute myeloid leukemia (AML) is a major concern. The chemoprotection conferred by the bone marrow microenvironment has lately been recognized, in addition to autophagy-mediated chemoresistance. Thus, the present study explored the effect of osteoblast on autophagy in AML and its impact on sensitivity to cytarabine (Ara-C) in the context of endosteal niche. Co-culture of KG1-a, HL60, or THP-1 AML cells with osteoblastic Saos-2 cell line induced autophagy in AML cell lines under direct contact. HL60 cells when co-culture with Saos-2 demonstrated more resistance to Ara-C induced apoptosis, which was reversed upon chloroquine treatment. Similarly, inhibition of autophagy in AML cell by knocking down Beclin-1 enhanced HL60 sensitivity to Ara-C. An interesting observation was upregulation of autophagy even in Saos-2 cells upon co-culture with AML cell, and increase in HL60 apoptosis in response to Ara-C on Beclin-1 knockdown in osteoblast cell. This highlights that autophagy plays a chemoprotective role in the endosteal niche in AML against Ara-C.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70055\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化疗后的高复发率是急性髓性白血病(AML)的一个主要问题。除了自噬介导的化疗耐药外,骨髓微环境赋予的化学保护作用最近也得到了认识。因此,本研究在内皮生态位的背景下探讨成骨细胞对AML自噬的影响及其对阿糖胞苷(Ara-C)敏感性的影响。KG1-a、HL60或THP-1 AML细胞与成骨细胞Saos-2细胞系共培养可诱导直接接触的AML细胞系自噬。与Saos-2共培养的HL60细胞对Ara-C诱导的凋亡表现出更强的抗性,而氯喹处理则相反。同样,通过敲低Beclin-1抑制AML细胞的自噬可增强HL60对Ara-C的敏感性。一个有趣的观察结果是,即使在Saos-2细胞与AML细胞共培养时,自噬也会上调,并且在成骨细胞中,Ara-C对Beclin-1敲低的反应增加了HL60凋亡。这表明自噬在AML抗Ara-C的内皮生态位中起化学保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acute Myeloid Leukemia-Osteoblast Interaction Mediated Autophagy Induction Protects Against Cytarabine Induced Apoptosis

High rate of relapse, following chemotherapy, in acute myeloid leukemia (AML) is a major concern. The chemoprotection conferred by the bone marrow microenvironment has lately been recognized, in addition to autophagy-mediated chemoresistance. Thus, the present study explored the effect of osteoblast on autophagy in AML and its impact on sensitivity to cytarabine (Ara-C) in the context of endosteal niche. Co-culture of KG1-a, HL60, or THP-1 AML cells with osteoblastic Saos-2 cell line induced autophagy in AML cell lines under direct contact. HL60 cells when co-culture with Saos-2 demonstrated more resistance to Ara-C induced apoptosis, which was reversed upon chloroquine treatment. Similarly, inhibition of autophagy in AML cell by knocking down Beclin-1 enhanced HL60 sensitivity to Ara-C. An interesting observation was upregulation of autophagy even in Saos-2 cells upon co-culture with AML cell, and increase in HL60 apoptosis in response to Ara-C on Beclin-1 knockdown in osteoblast cell. This highlights that autophagy plays a chemoprotective role in the endosteal niche in AML against Ara-C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信