Samuel Suárez-Marcote, Laura Morán-Fernández, Verónica Bolón-Canedo
{"title":"通过低精度特征选择优化资源利用:对数除法和随机舍入的性能分析","authors":"Samuel Suárez-Marcote, Laura Morán-Fernández, Verónica Bolón-Canedo","doi":"10.1111/exsy.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The growth in the number of wearable devices has increased the amount of data produced daily. Simultaneously, the limitations of such devices has also led to a growing interest in the implementation of machine learning algorithms with low-precision computation. We propose green and efficient modifications of state-of-the-art feature selection methods based on information theory and fixed-point representation. We tested two potential improvements: stochastic rounding to prevent information loss, and logarithmic division to improve computational and energy efficiency. Experiments with several datasets showed comparable results to baseline methods, with minimal information loss in both feature selection and subsequent classification steps. Our low-precision approach proved viable even for complex datasets like microarrays, making it suitable for energy-efficient internet-of-things (IoT) devices. While further investigation into stochastic rounding did not yield significant improvements, the use of logarithmic division for probability approximation showed promising results without compromising classification performance. Our findings offer valuable insights into resource-efficient feature selection that contribute to IoT device performance and sustainability.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising Resource Use Through Low-Precision Feature Selection: A Performance Analysis of Logarithmic Division and Stochastic Rounding\",\"authors\":\"Samuel Suárez-Marcote, Laura Morán-Fernández, Verónica Bolón-Canedo\",\"doi\":\"10.1111/exsy.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The growth in the number of wearable devices has increased the amount of data produced daily. Simultaneously, the limitations of such devices has also led to a growing interest in the implementation of machine learning algorithms with low-precision computation. We propose green and efficient modifications of state-of-the-art feature selection methods based on information theory and fixed-point representation. We tested two potential improvements: stochastic rounding to prevent information loss, and logarithmic division to improve computational and energy efficiency. Experiments with several datasets showed comparable results to baseline methods, with minimal information loss in both feature selection and subsequent classification steps. Our low-precision approach proved viable even for complex datasets like microarrays, making it suitable for energy-efficient internet-of-things (IoT) devices. While further investigation into stochastic rounding did not yield significant improvements, the use of logarithmic division for probability approximation showed promising results without compromising classification performance. Our findings offer valuable insights into resource-efficient feature selection that contribute to IoT device performance and sustainability.</p>\\n </div>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"42 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimising Resource Use Through Low-Precision Feature Selection: A Performance Analysis of Logarithmic Division and Stochastic Rounding
The growth in the number of wearable devices has increased the amount of data produced daily. Simultaneously, the limitations of such devices has also led to a growing interest in the implementation of machine learning algorithms with low-precision computation. We propose green and efficient modifications of state-of-the-art feature selection methods based on information theory and fixed-point representation. We tested two potential improvements: stochastic rounding to prevent information loss, and logarithmic division to improve computational and energy efficiency. Experiments with several datasets showed comparable results to baseline methods, with minimal information loss in both feature selection and subsequent classification steps. Our low-precision approach proved viable even for complex datasets like microarrays, making it suitable for energy-efficient internet-of-things (IoT) devices. While further investigation into stochastic rounding did not yield significant improvements, the use of logarithmic division for probability approximation showed promising results without compromising classification performance. Our findings offer valuable insights into resource-efficient feature selection that contribute to IoT device performance and sustainability.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.