伊比利亚深海平原高蛇纹石化橄榄岩的磁性特征及其海洋磁异常意义

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yuzhen Zhang, Zhaoxia Jiang, Kai Su, Mark J. Dekkers, Sanzhong Li, Qingsong Liu
{"title":"伊比利亚深海平原高蛇纹石化橄榄岩的磁性特征及其海洋磁异常意义","authors":"Yuzhen Zhang,&nbsp;Zhaoxia Jiang,&nbsp;Kai Su,&nbsp;Mark J. Dekkers,&nbsp;Sanzhong Li,&nbsp;Qingsong Liu","doi":"10.1029/2024GC012035","DOIUrl":null,"url":null,"abstract":"<p>Serpentinization, a consequence of water-rock interaction in mafic and ultramafic rocks, refers to the hydrothermal alteration of olivine and pyroxene with serpentine as the typical product. Magnetite is produced in variable amounts during this serpentinization process. Here, we conducted a systematic rock magnetic study on the serpentinite of Ocean Drilling Program (ODP) Hole 1070A from the Iberia Abyssal Plain. From bottom to top, three units are distinguished rock-magnetically: (a) serpentinized peridotite dominated by single-domain (SD) ± multidomain (MD) magnetite particles; (b) gabbro with SD ± vortex state magnetite; (c) breccia dominated by MD ± vortex and SD ± vortex state maghemite/hematite and magnetite. Samples of the three units are highly serpentinized with serpentinization degrees &gt;60%. The magnetite content increases exponentially with the degree of serpentinization. Two phases of serpentinization are proposed: (a) massive serpentinization that occurred before mantle exhumation and (b) maghemitization-serpentinization that occurred near or at the seafloor after the final exhumation of mantle peridotites. The latter reduces the magnetization of the breccia unit significantly. Serpentinized peridotite associated with strong magnetization is the dominant contributor to the marine magnetic anomalies in ocean to continent transition areas.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012035","citationCount":"0","resultStr":"{\"title\":\"Magnetic Characteristics of Highly Serpentinized Peridotite in the Iberia Abyssal Plain and Implications for Marine Magnetic Anomalies\",\"authors\":\"Yuzhen Zhang,&nbsp;Zhaoxia Jiang,&nbsp;Kai Su,&nbsp;Mark J. Dekkers,&nbsp;Sanzhong Li,&nbsp;Qingsong Liu\",\"doi\":\"10.1029/2024GC012035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Serpentinization, a consequence of water-rock interaction in mafic and ultramafic rocks, refers to the hydrothermal alteration of olivine and pyroxene with serpentine as the typical product. Magnetite is produced in variable amounts during this serpentinization process. Here, we conducted a systematic rock magnetic study on the serpentinite of Ocean Drilling Program (ODP) Hole 1070A from the Iberia Abyssal Plain. From bottom to top, three units are distinguished rock-magnetically: (a) serpentinized peridotite dominated by single-domain (SD) ± multidomain (MD) magnetite particles; (b) gabbro with SD ± vortex state magnetite; (c) breccia dominated by MD ± vortex and SD ± vortex state maghemite/hematite and magnetite. Samples of the three units are highly serpentinized with serpentinization degrees &gt;60%. The magnetite content increases exponentially with the degree of serpentinization. Two phases of serpentinization are proposed: (a) massive serpentinization that occurred before mantle exhumation and (b) maghemitization-serpentinization that occurred near or at the seafloor after the final exhumation of mantle peridotites. The latter reduces the magnetization of the breccia unit significantly. Serpentinized peridotite associated with strong magnetization is the dominant contributor to the marine magnetic anomalies in ocean to continent transition areas.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012035\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012035","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

蛇纹石化是指以蛇纹石为典型产物的橄榄石和辉石的热液蚀变,是基性岩和超基性岩中水岩相互作用的结果。在蛇纹石化过程中产生了不同数量的磁铁矿。在此,我们对来自伊比利亚深海平原的海洋钻探计划(ODP) 1070A孔的蛇纹岩进行了系统的岩石磁研究。从下至上可区分出3个岩石磁性单元:(a)以单畴(SD)±多畴(MD)磁铁矿颗粒为主的蛇纹橄榄岩;(b)含SD±涡旋态磁铁矿辉长岩;(c)角砾岩以MD±涡旋和SD±涡旋状态的磁铁矿/赤铁矿和磁铁矿为主。三个单元的样品呈高蛇纹石化,蛇纹石化程度达60%。磁铁矿含量随蛇纹岩化程度呈指数增长。提出了两个阶段的蛇纹石化:(a)在地幔挖掘之前发生的块状蛇纹石化;(b)在地幔橄榄岩最终挖掘之后发生在海底附近或海底的岩浆化-蛇纹石化。后者显著降低了角砾岩单元的磁化强度。与强磁化有关的蛇纹石橄榄岩是洋陆过渡区海洋磁异常的主要成因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic Characteristics of Highly Serpentinized Peridotite in the Iberia Abyssal Plain and Implications for Marine Magnetic Anomalies

Magnetic Characteristics of Highly Serpentinized Peridotite in the Iberia Abyssal Plain and Implications for Marine Magnetic Anomalies

Serpentinization, a consequence of water-rock interaction in mafic and ultramafic rocks, refers to the hydrothermal alteration of olivine and pyroxene with serpentine as the typical product. Magnetite is produced in variable amounts during this serpentinization process. Here, we conducted a systematic rock magnetic study on the serpentinite of Ocean Drilling Program (ODP) Hole 1070A from the Iberia Abyssal Plain. From bottom to top, three units are distinguished rock-magnetically: (a) serpentinized peridotite dominated by single-domain (SD) ± multidomain (MD) magnetite particles; (b) gabbro with SD ± vortex state magnetite; (c) breccia dominated by MD ± vortex and SD ± vortex state maghemite/hematite and magnetite. Samples of the three units are highly serpentinized with serpentinization degrees >60%. The magnetite content increases exponentially with the degree of serpentinization. Two phases of serpentinization are proposed: (a) massive serpentinization that occurred before mantle exhumation and (b) maghemitization-serpentinization that occurred near or at the seafloor after the final exhumation of mantle peridotites. The latter reduces the magnetization of the breccia unit significantly. Serpentinized peridotite associated with strong magnetization is the dominant contributor to the marine magnetic anomalies in ocean to continent transition areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信