考虑林龄动态的陆地生态系统碳汇评估模型(cevsa -Age)

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Mengyu Zhang, Honglin He, Li Zhang, Guirui Yu, Xiaoli Ren, Yuanyuan Huang, Wenping Yuan, Zhong'en Niu
{"title":"考虑林龄动态的陆地生态系统碳汇评估模型(cevsa -Age)","authors":"Mengyu Zhang,&nbsp;Honglin He,&nbsp;Li Zhang,&nbsp;Guirui Yu,&nbsp;Xiaoli Ren,&nbsp;Yuanyuan Huang,&nbsp;Wenping Yuan,&nbsp;Zhong'en Niu","doi":"10.1029/2024MS004575","DOIUrl":null,"url":null,"abstract":"<p>The large variation in net ecosystem productivity (NEP) with forest age was dominated by the dynamics of net primary productivity (NPP)–which in turn was determined by the different response slopes of gross primary productivity (GPP) and autotrophic respiration (Ra) with forest age. However, only few models can comprehensively represent the impacts of forest age and global changes including land-use change, climate change, nitrogen deposition, and atmospheric CO<sub>2</sub> from the perspective of ecological processes. Based on a process-based model (CEVSA-ES) that included these global changes, we developed an ecosystem carbon sink assessment model considering forest age dynamics (CEVSA-AgeD) using satellite-based relationships between GPP (or Ra) and forest age to constrain photosynthesis and autotrophic respiration processes. Subsequently, we used a model data-fusion framework combined with carbon flux observations to calibrate the model. The calibrated CEVSA-AgeD model performed well in simulating seasonal (R<sup>2</sup> values for GPP, ecosystem respiration, and NEP were 0.86, 0.79, and 0.66, respectively) and annual carbon flux changes (R<sup>2</sup> of GPP, ecosystem respiration, and NEP were 0.83, 0.77, and 0.67, respectively). The magnitude of average NEP in China estimated using this model was 0.35 ± 0.005 TgC/yr from 2001 to 2021, which was close to previous estimates, and the dynamics of forests age increased NEP by 87–92 TgC/yr. These results indicate that the CEVSA-AgeD model performed well in simulating carbon fluxes at the site and regional scales and that it was necessary to incorporate the effect of forest age dynamics on carbon cycling processes into process-based models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004575","citationCount":"0","resultStr":"{\"title\":\"A Terrestrial Ecosystem Carbon Sink Assessment Model Considering Forest Age Dynamics (CEVSA-AgeD)\",\"authors\":\"Mengyu Zhang,&nbsp;Honglin He,&nbsp;Li Zhang,&nbsp;Guirui Yu,&nbsp;Xiaoli Ren,&nbsp;Yuanyuan Huang,&nbsp;Wenping Yuan,&nbsp;Zhong'en Niu\",\"doi\":\"10.1029/2024MS004575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The large variation in net ecosystem productivity (NEP) with forest age was dominated by the dynamics of net primary productivity (NPP)–which in turn was determined by the different response slopes of gross primary productivity (GPP) and autotrophic respiration (Ra) with forest age. However, only few models can comprehensively represent the impacts of forest age and global changes including land-use change, climate change, nitrogen deposition, and atmospheric CO<sub>2</sub> from the perspective of ecological processes. Based on a process-based model (CEVSA-ES) that included these global changes, we developed an ecosystem carbon sink assessment model considering forest age dynamics (CEVSA-AgeD) using satellite-based relationships between GPP (or Ra) and forest age to constrain photosynthesis and autotrophic respiration processes. Subsequently, we used a model data-fusion framework combined with carbon flux observations to calibrate the model. The calibrated CEVSA-AgeD model performed well in simulating seasonal (R<sup>2</sup> values for GPP, ecosystem respiration, and NEP were 0.86, 0.79, and 0.66, respectively) and annual carbon flux changes (R<sup>2</sup> of GPP, ecosystem respiration, and NEP were 0.83, 0.77, and 0.67, respectively). The magnitude of average NEP in China estimated using this model was 0.35 ± 0.005 TgC/yr from 2001 to 2021, which was close to previous estimates, and the dynamics of forests age increased NEP by 87–92 TgC/yr. These results indicate that the CEVSA-AgeD model performed well in simulating carbon fluxes at the site and regional scales and that it was necessary to incorporate the effect of forest age dynamics on carbon cycling processes into process-based models.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004575\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004575","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

净生态系统生产力(NEP)随林龄的巨大变化主要受净初级生产力(NPP)的动态影响,而净初级生产力(NPP)又由总初级生产力(GPP)和自养呼吸(Ra)随林龄的不同响应斜率决定。然而,能够从生态过程的角度全面反映森林年龄与土地利用变化、气候变化、氮沉降、大气CO2等全球变化影响的模式很少。基于包含这些全球变化的过程模型(CEVSA-ES),我们开发了一个考虑森林年龄动态的生态系统碳汇评估模型(cevsa - age),该模型利用基于卫星的GPP(或Ra)与森林年龄之间的关系来限制光合作用和自养呼吸过程。随后,我们使用模型数据融合框架结合碳通量观测对模型进行校准。校正后的CEVSA-AgeD模型在模拟季节(GPP、生态系统呼吸和NEP的R2分别为0.86、0.79和0.66)和年碳通量变化(GPP、生态系统呼吸和NEP的R2分别为0.83、0.77和0.67)方面表现良好。利用该模型估算的2001 - 2021年中国平均NEP值为0.35±0.005 TgC/yr,与以往估算值接近,林龄动态使NEP增加了87 ~ 92 TgC/yr。这些结果表明,cevsa - age模型在站点尺度和区域尺度上均能较好地模拟碳通量,有必要在基于过程的模型中纳入林龄动态对碳循环过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Terrestrial Ecosystem Carbon Sink Assessment Model Considering Forest Age Dynamics (CEVSA-AgeD)

A Terrestrial Ecosystem Carbon Sink Assessment Model Considering Forest Age Dynamics (CEVSA-AgeD)

The large variation in net ecosystem productivity (NEP) with forest age was dominated by the dynamics of net primary productivity (NPP)–which in turn was determined by the different response slopes of gross primary productivity (GPP) and autotrophic respiration (Ra) with forest age. However, only few models can comprehensively represent the impacts of forest age and global changes including land-use change, climate change, nitrogen deposition, and atmospheric CO2 from the perspective of ecological processes. Based on a process-based model (CEVSA-ES) that included these global changes, we developed an ecosystem carbon sink assessment model considering forest age dynamics (CEVSA-AgeD) using satellite-based relationships between GPP (or Ra) and forest age to constrain photosynthesis and autotrophic respiration processes. Subsequently, we used a model data-fusion framework combined with carbon flux observations to calibrate the model. The calibrated CEVSA-AgeD model performed well in simulating seasonal (R2 values for GPP, ecosystem respiration, and NEP were 0.86, 0.79, and 0.66, respectively) and annual carbon flux changes (R2 of GPP, ecosystem respiration, and NEP were 0.83, 0.77, and 0.67, respectively). The magnitude of average NEP in China estimated using this model was 0.35 ± 0.005 TgC/yr from 2001 to 2021, which was close to previous estimates, and the dynamics of forests age increased NEP by 87–92 TgC/yr. These results indicate that the CEVSA-AgeD model performed well in simulating carbon fluxes at the site and regional scales and that it was necessary to incorporate the effect of forest age dynamics on carbon cycling processes into process-based models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信