{"title":"用四边形面积坐标法制定的广义保形元素对薄板进行上限极限分析","authors":"Jiangtao Xia, Shenshen Chen, Pengyu Zhu","doi":"10.1007/s00419-025-02771-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a generalized conforming element formulated by the quadrilateral area coordinate method is developed for upper bound limit analysis of thin plates. This element can prevent loss of accuracy in severely distorted meshes since the transformation between the area and Cartesian coordinates is always linear. Once the deflection field is approximated and the upper bound theorem applied, upper bound limit analysis of thin plates can be formulated by minimizing the dissipation power subject to a set of equality constraints. In order for overcoming the difficulties caused by the nonsmoothness of the goal function, a direct iterative method is utilized to solve this optimization problem, which distinguishes the rigid zones from the plastic zones at each iteration. Numerical examples show that the proposed method for upper bound limit analysis of thin plates is reasonable and effective and possesses the advantages of high accuracy and reliability even for severely distorted meshes.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bound limit analysis of thin plates with a generalized conforming element formulated by the quadrilateral area coordinate method\",\"authors\":\"Jiangtao Xia, Shenshen Chen, Pengyu Zhu\",\"doi\":\"10.1007/s00419-025-02771-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a generalized conforming element formulated by the quadrilateral area coordinate method is developed for upper bound limit analysis of thin plates. This element can prevent loss of accuracy in severely distorted meshes since the transformation between the area and Cartesian coordinates is always linear. Once the deflection field is approximated and the upper bound theorem applied, upper bound limit analysis of thin plates can be formulated by minimizing the dissipation power subject to a set of equality constraints. In order for overcoming the difficulties caused by the nonsmoothness of the goal function, a direct iterative method is utilized to solve this optimization problem, which distinguishes the rigid zones from the plastic zones at each iteration. Numerical examples show that the proposed method for upper bound limit analysis of thin plates is reasonable and effective and possesses the advantages of high accuracy and reliability even for severely distorted meshes.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-025-02771-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02771-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Upper bound limit analysis of thin plates with a generalized conforming element formulated by the quadrilateral area coordinate method
In this paper, a generalized conforming element formulated by the quadrilateral area coordinate method is developed for upper bound limit analysis of thin plates. This element can prevent loss of accuracy in severely distorted meshes since the transformation between the area and Cartesian coordinates is always linear. Once the deflection field is approximated and the upper bound theorem applied, upper bound limit analysis of thin plates can be formulated by minimizing the dissipation power subject to a set of equality constraints. In order for overcoming the difficulties caused by the nonsmoothness of the goal function, a direct iterative method is utilized to solve this optimization problem, which distinguishes the rigid zones from the plastic zones at each iteration. Numerical examples show that the proposed method for upper bound limit analysis of thin plates is reasonable and effective and possesses the advantages of high accuracy and reliability even for severely distorted meshes.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.