Cxcl9调节皮下脂肪组织中与衰老相关的微血管代谢和血管生成功能障碍

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Xin Fu, Yu Zhao, Xiwei Cui, Siyuan Huang, Yanze Lv, Chen Li, Fuxing Gong, Zhigang Yang, Xiaonan Yang, Ran. Xiao
{"title":"Cxcl9调节皮下脂肪组织中与衰老相关的微血管代谢和血管生成功能障碍","authors":"Xin Fu,&nbsp;Yu Zhao,&nbsp;Xiwei Cui,&nbsp;Siyuan Huang,&nbsp;Yanze Lv,&nbsp;Chen Li,&nbsp;Fuxing Gong,&nbsp;Zhigang Yang,&nbsp;Xiaonan Yang,&nbsp;Ran. Xiao","doi":"10.1007/s10456-025-09970-y","DOIUrl":null,"url":null,"abstract":"<div><p>Microvascular aging, predominantly driven by endothelial cells (ECs) dysfunction, is a critical early event in cardiovascular diseases. However, the specific effects of aging on ECs across the microvascular network segments and the associated mechanisms are not fully understood. In this study, we detected a microvascular rarefaction and a decreased proportion of venular ECs in the subcutaneous adipose tissue of aged mice using light-sheet immunofluorescence microscopy and single-cell RNA sequencing. Moreover, aged ECs, especially in the venular subtype, exhibited a pseudotemporal transition to a terminal state characterized by diminished oxidative phosphorylation and strengthened cytokine signaling. Metabolic flux balance analysis predicted that among the 13 differentially expressed cytokines identified in aged EC subpopulations, Cxcl9 was strongly correlated with impaired oxidative phosphorylation in aged ECs. It was further validated using microvascular ECs treated with Cxcl9. Notably, the G protein-coupled receptor signaling pathway was subsequently suppressed, in which Aplnr suppression was also observed in aged ECs, contributing to their impaired energy metabolism and reduced angiogenesis. Based on these findings, we propose Cxcl9 as a biomarker for aging-related dysfunction of microvascular ECs, suggesting that targeting Cxcl9 signaling may help combat microvascular aging.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 2","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-025-09970-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Cxcl9 modulates aging associated microvascular metabolic and angiogenic dysfunctions in subcutaneous adipose tissue\",\"authors\":\"Xin Fu,&nbsp;Yu Zhao,&nbsp;Xiwei Cui,&nbsp;Siyuan Huang,&nbsp;Yanze Lv,&nbsp;Chen Li,&nbsp;Fuxing Gong,&nbsp;Zhigang Yang,&nbsp;Xiaonan Yang,&nbsp;Ran. Xiao\",\"doi\":\"10.1007/s10456-025-09970-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microvascular aging, predominantly driven by endothelial cells (ECs) dysfunction, is a critical early event in cardiovascular diseases. However, the specific effects of aging on ECs across the microvascular network segments and the associated mechanisms are not fully understood. In this study, we detected a microvascular rarefaction and a decreased proportion of venular ECs in the subcutaneous adipose tissue of aged mice using light-sheet immunofluorescence microscopy and single-cell RNA sequencing. Moreover, aged ECs, especially in the venular subtype, exhibited a pseudotemporal transition to a terminal state characterized by diminished oxidative phosphorylation and strengthened cytokine signaling. Metabolic flux balance analysis predicted that among the 13 differentially expressed cytokines identified in aged EC subpopulations, Cxcl9 was strongly correlated with impaired oxidative phosphorylation in aged ECs. It was further validated using microvascular ECs treated with Cxcl9. Notably, the G protein-coupled receptor signaling pathway was subsequently suppressed, in which Aplnr suppression was also observed in aged ECs, contributing to their impaired energy metabolism and reduced angiogenesis. Based on these findings, we propose Cxcl9 as a biomarker for aging-related dysfunction of microvascular ECs, suggesting that targeting Cxcl9 signaling may help combat microvascular aging.</p></div>\",\"PeriodicalId\":7886,\"journal\":{\"name\":\"Angiogenesis\",\"volume\":\"28 2\",\"pages\":\"\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10456-025-09970-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angiogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10456-025-09970-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-025-09970-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

微血管老化主要由内皮细胞(ECs)功能障碍驱动,是心血管疾病的关键早期事件。然而,衰老对微血管网络段内皮细胞的具体影响及其相关机制尚不完全清楚。在这项研究中,我们使用薄层免疫荧光显微镜和单细胞RNA测序检测到老年小鼠皮下脂肪组织微血管稀薄和静脉内皮细胞比例减少。此外,衰老的内皮细胞,尤其是小静脉亚型,表现出以氧化磷酸化减少和细胞因子信号传导增强为特征的伪时间过渡到终端状态。代谢通量平衡分析预测,在老年EC亚群中发现的13种差异表达的细胞因子中,Cxcl9与老年EC中氧化磷酸化受损密切相关。用Cxcl9治疗微血管内皮细胞进一步验证了这一点。值得注意的是,G蛋白偶联受体信号通路随后被抑制,其中在老年ECs中也观察到Aplnr的抑制,导致其能量代谢受损和血管生成减少。基于这些发现,我们提出Cxcl9作为微血管内皮细胞衰老相关功能障碍的生物标志物,表明靶向Cxcl9信号传导可能有助于对抗微血管衰老。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cxcl9 modulates aging associated microvascular metabolic and angiogenic dysfunctions in subcutaneous adipose tissue

Microvascular aging, predominantly driven by endothelial cells (ECs) dysfunction, is a critical early event in cardiovascular diseases. However, the specific effects of aging on ECs across the microvascular network segments and the associated mechanisms are not fully understood. In this study, we detected a microvascular rarefaction and a decreased proportion of venular ECs in the subcutaneous adipose tissue of aged mice using light-sheet immunofluorescence microscopy and single-cell RNA sequencing. Moreover, aged ECs, especially in the venular subtype, exhibited a pseudotemporal transition to a terminal state characterized by diminished oxidative phosphorylation and strengthened cytokine signaling. Metabolic flux balance analysis predicted that among the 13 differentially expressed cytokines identified in aged EC subpopulations, Cxcl9 was strongly correlated with impaired oxidative phosphorylation in aged ECs. It was further validated using microvascular ECs treated with Cxcl9. Notably, the G protein-coupled receptor signaling pathway was subsequently suppressed, in which Aplnr suppression was also observed in aged ECs, contributing to their impaired energy metabolism and reduced angiogenesis. Based on these findings, we propose Cxcl9 as a biomarker for aging-related dysfunction of microvascular ECs, suggesting that targeting Cxcl9 signaling may help combat microvascular aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信