基于深度学习的海量MIMO信道状态信息自适应压缩

Faris B. Mismar;Aliye Özge Kaya
{"title":"基于深度学习的海量MIMO信道状态信息自适应压缩","authors":"Faris B. Mismar;Aliye Özge Kaya","doi":"10.1109/LNET.2024.3475269","DOIUrl":null,"url":null,"abstract":"This letter proposes the use of deep autoencoders to compress the channel information in a massive multiple input and multiple output (MIMO) system. Although autoencoders perform lossy compression, they still have adequate usefulness when applied to massive MIMO system channel state information (CSI) compression. To demonstrate their impact on the CSI, we measure the performance of the system under two different channel models for different compression ratios. We disclose a few practical considerations in using autoencoders for this propose. We show through simulation that the run-time complexity of this deep autoencoder is irrelative to the compression ratio and thus an adaptive compression rate is feasible with an optimal compression ratio depending on the channel model and the signal to noise ratio.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 4","pages":"267-271"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Compression of Massive MIMO Channel State Information With Deep Learning\",\"authors\":\"Faris B. Mismar;Aliye Özge Kaya\",\"doi\":\"10.1109/LNET.2024.3475269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes the use of deep autoencoders to compress the channel information in a massive multiple input and multiple output (MIMO) system. Although autoencoders perform lossy compression, they still have adequate usefulness when applied to massive MIMO system channel state information (CSI) compression. To demonstrate their impact on the CSI, we measure the performance of the system under two different channel models for different compression ratios. We disclose a few practical considerations in using autoencoders for this propose. We show through simulation that the run-time complexity of this deep autoencoder is irrelative to the compression ratio and thus an adaptive compression rate is feasible with an optimal compression ratio depending on the channel model and the signal to noise ratio.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 4\",\"pages\":\"267-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706622/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706622/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出使用深度自动编码器来压缩大规模多输入多输出(MIMO)系统中的信道信息。虽然自编码器进行的是有损压缩,但它们在应用于大规模多输入多输出系统信道状态信息(CSI)压缩时仍有足够的用处。为了证明自动编码器对 CSI 的影响,我们测量了两种不同信道模型下不同压缩比的系统性能。我们披露了使用自动编码器的一些实际考虑因素。我们通过仿真表明,这种深度自动编码器的运行时间复杂性与压缩率无关,因此自适应压缩率是可行的,其最佳压缩率取决于信道模型和信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Compression of Massive MIMO Channel State Information With Deep Learning
This letter proposes the use of deep autoencoders to compress the channel information in a massive multiple input and multiple output (MIMO) system. Although autoencoders perform lossy compression, they still have adequate usefulness when applied to massive MIMO system channel state information (CSI) compression. To demonstrate their impact on the CSI, we measure the performance of the system under two different channel models for different compression ratios. We disclose a few practical considerations in using autoencoders for this propose. We show through simulation that the run-time complexity of this deep autoencoder is irrelative to the compression ratio and thus an adaptive compression rate is feasible with an optimal compression ratio depending on the channel model and the signal to noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信