基于深度强化学习的移动边缘生成和计算的延迟感知资源分配

Yinyu Wu;Xuhui Zhang;Jinke Ren;Huijun Xing;Yanyan Shen;Shuguang Cui
{"title":"基于深度强化学习的移动边缘生成和计算的延迟感知资源分配","authors":"Yinyu Wu;Xuhui Zhang;Jinke Ren;Huijun Xing;Yanyan Shen;Shuguang Cui","doi":"10.1109/LNET.2024.3486194","DOIUrl":null,"url":null,"abstract":"Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently, Numerical results demonstrate that the proposed algorithm can achieve lower latency than several baseline algorithms.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 4","pages":"237-241"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning\",\"authors\":\"Yinyu Wu;Xuhui Zhang;Jinke Ren;Huijun Xing;Yanyan Shen;Shuguang Cui\",\"doi\":\"10.1109/LNET.2024.3486194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently, Numerical results demonstrate that the proposed algorithm can achieve lower latency than several baseline algorithms.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 4\",\"pages\":\"237-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734319/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10734319/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,移动边缘计算(MEC)与生成式人工智能(GAI)技术的融合催生了一个名为移动边缘生成与计算(MEGC)的新领域,为移动用户提供任务计算和内容生成等异构服务。在本文中,我们研究了MEGC系统中的联合通信、计算和AIGC资源分配问题。为了提高移动用户的服务质量,首先提出了最小化延迟问题。由于优化变量的强耦合性,我们提出了一种新的基于深度强化学习的算法来有效地求解该问题,数值结果表明,该算法比几种基准算法具有更低的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently, Numerical results demonstrate that the proposed algorithm can achieve lower latency than several baseline algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信