具有一般防御要求的安全博弈混合策略的计算

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rufan Bai , Haoxing Lin , Xiaowei Wu , Minming Li , Weijia Jia
{"title":"具有一般防御要求的安全博弈混合策略的计算","authors":"Rufan Bai ,&nbsp;Haoxing Lin ,&nbsp;Xiaowei Wu ,&nbsp;Minming Li ,&nbsp;Weijia Jia","doi":"10.1016/j.artint.2025.104297","DOIUrl":null,"url":null,"abstract":"<div><div>The Stackelberg security game is played between a defender and an attacker, where the defender needs to allocate a limited amount of resources to multiple targets in order to minimize the loss due to adversarial attacks by the attacker. While allowing targets to have different values, classic settings often assume uniform requirements for defending the targets. This enables existing results that study mixed strategies (randomized allocation algorithms) to adopt a <em>compact representation</em> of the mixed strategies.</div><div>In this work, we initiate the study of mixed strategies for security games in which the targets can have different defending requirements. In contrast to the case of uniform defending requirements, for which an optimal mixed strategy can be computed efficiently, we show that computing the optimal mixed strategy is <span>NP</span>-hard for the general defending requirements setting. However, we show strong upper and lower bounds for the optimal mixed strategy defending result. Additionally, we extend our analysis to study uniform attack settings on these security games.</div><div>We propose an efficient close-to-optimal <span>Patching</span> algorithm that computes mixed strategies using only a few pure strategies. Furthermore, we study the setting when the game is played on a network and resource sharing is enabled between neighboring targets. We show the effectiveness of our algorithm in various large real-world datasets, addressing both uniform and general defending requirements.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"341 ","pages":"Article 104297"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the computation of mixed strategies for security games with general defending requirements\",\"authors\":\"Rufan Bai ,&nbsp;Haoxing Lin ,&nbsp;Xiaowei Wu ,&nbsp;Minming Li ,&nbsp;Weijia Jia\",\"doi\":\"10.1016/j.artint.2025.104297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Stackelberg security game is played between a defender and an attacker, where the defender needs to allocate a limited amount of resources to multiple targets in order to minimize the loss due to adversarial attacks by the attacker. While allowing targets to have different values, classic settings often assume uniform requirements for defending the targets. This enables existing results that study mixed strategies (randomized allocation algorithms) to adopt a <em>compact representation</em> of the mixed strategies.</div><div>In this work, we initiate the study of mixed strategies for security games in which the targets can have different defending requirements. In contrast to the case of uniform defending requirements, for which an optimal mixed strategy can be computed efficiently, we show that computing the optimal mixed strategy is <span>NP</span>-hard for the general defending requirements setting. However, we show strong upper and lower bounds for the optimal mixed strategy defending result. Additionally, we extend our analysis to study uniform attack settings on these security games.</div><div>We propose an efficient close-to-optimal <span>Patching</span> algorithm that computes mixed strategies using only a few pure strategies. Furthermore, we study the setting when the game is played on a network and resource sharing is enabled between neighboring targets. We show the effectiveness of our algorithm in various large real-world datasets, addressing both uniform and general defending requirements.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"341 \",\"pages\":\"Article 104297\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225000165\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000165","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Stackelberg安全游戏是在防御者和攻击者之间进行的,防御者需要将有限的资源分配给多个目标,以最大限度地减少由于攻击者的对抗性攻击而造成的损失。虽然允许目标具有不同的值,但经典设置通常假设防御目标的统一要求。这使得研究混合策略(随机分配算法)的现有结果能够采用混合策略的紧凑表示。在这项工作中,我们启动了安全博弈的混合策略研究,其中目标可以有不同的防御需求。在统一防御需求的情况下,可以有效地计算最优混合策略,而在一般防御需求设置下,计算最优混合策略是np困难的。然而,我们给出了最优混合策略防御结果的强上界和下界。此外,我们将分析扩展到研究这些安全游戏的统一攻击设置。我们提出了一种高效的接近最优的补丁算法,该算法仅使用少量纯策略计算混合策略。此外,我们研究了当游戏在网络上进行并且相邻目标之间实现资源共享时的设置。我们在各种大型现实世界数据集中展示了我们的算法的有效性,解决了统一和一般的防御要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the computation of mixed strategies for security games with general defending requirements
The Stackelberg security game is played between a defender and an attacker, where the defender needs to allocate a limited amount of resources to multiple targets in order to minimize the loss due to adversarial attacks by the attacker. While allowing targets to have different values, classic settings often assume uniform requirements for defending the targets. This enables existing results that study mixed strategies (randomized allocation algorithms) to adopt a compact representation of the mixed strategies.
In this work, we initiate the study of mixed strategies for security games in which the targets can have different defending requirements. In contrast to the case of uniform defending requirements, for which an optimal mixed strategy can be computed efficiently, we show that computing the optimal mixed strategy is NP-hard for the general defending requirements setting. However, we show strong upper and lower bounds for the optimal mixed strategy defending result. Additionally, we extend our analysis to study uniform attack settings on these security games.
We propose an efficient close-to-optimal Patching algorithm that computes mixed strategies using only a few pure strategies. Furthermore, we study the setting when the game is played on a network and resource sharing is enabled between neighboring targets. We show the effectiveness of our algorithm in various large real-world datasets, addressing both uniform and general defending requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信