红霉素和罗红霉素联合暴露对核核小球藻拮抗作用的关键分子机制

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Feifan Wu , Xiangjie Pan , Yuhao Zhou , Yan Zhu , Kai Liu , Wei Li , Jiangang Han
{"title":"红霉素和罗红霉素联合暴露对核核小球藻拮抗作用的关键分子机制","authors":"Feifan Wu ,&nbsp;Xiangjie Pan ,&nbsp;Yuhao Zhou ,&nbsp;Yan Zhu ,&nbsp;Kai Liu ,&nbsp;Wei Li ,&nbsp;Jiangang Han","doi":"10.1016/j.aquatox.2025.107269","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on <em>Chlorella pyrenoidosa</em> was illustrated based on the physiological–biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of <em>C. pyrenoidosa</em> at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"280 ","pages":"Article 107269"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa\",\"authors\":\"Feifan Wu ,&nbsp;Xiangjie Pan ,&nbsp;Yuhao Zhou ,&nbsp;Yan Zhu ,&nbsp;Kai Liu ,&nbsp;Wei Li ,&nbsp;Jiangang Han\",\"doi\":\"10.1016/j.aquatox.2025.107269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on <em>Chlorella pyrenoidosa</em> was illustrated based on the physiological–biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of <em>C. pyrenoidosa</em> at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"280 \",\"pages\":\"Article 107269\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25000347\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000347","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素等新兴污染物近年来引起了人们的高度关注,但多种抗生素在环境中的复杂共存,为准确评估抗生素对微藻等水生生物的毒性提出了新的挑战。本研究基于生理生化反应和转录组学分析,阐述了红霉素(ERY)和罗红霉素(ROX)联合作用小球藻(Chlorella pyrenoidosa)的机制。结果显示,各处理组在14 d时均有抑制pyrenoidosa生物量的作用,而共暴露组则有拮抗作用。尽管存在多种补偿机制,如扩大天线尺寸和启动替代电子载流子,但光系统仍是主要目标。电子在PSI供体侧的拦截限制了能量的产生,而色素含量和比例的调整增强了微藻的适应性。与外源化合物降解相关的酶和基因,包括细胞色素P450 (P450)、谷胱甘肽s转移酶(GST)和ABC转运蛋白,介导了抗生素的解毒。共暴露诱导相关基因表达上调,增加了抗性,解释了拮抗作用。通过增加脂质比例来改变能量分配,满足了微藻生理活动的迫切需要。本研究重新强调了多种抗生素之间的相互作用模式,并为抗生素联合诱导的拮抗机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The key molecular mechanisms of antagonism induced by combined exposure to erythromycin and roxithromycin in Chlorella pyrenoidosa
Emerging pollutants such as antibiotics have raised great concern in recent years, but the complex coexistence of multiple antibiotics in the environment poses a new challenge in the accurate assessment of the toxicity of antibiotics to aquatic organisms such as microalgae. In this study, the mechanism of action of a combination of erythromycin (ERY) and roxithromycin (ROX) on Chlorella pyrenoidosa was illustrated based on the physiological–biochemical response and transcriptomic analysis. The results revealed an inhibitory effect on the biomass of C. pyrenoidosa at 14 d in all treatment groups, whereas an antagonistic effect was observed in the coexposure groups. The photosystem was the main target despite the existence of multiple compensatory mechanisms, such as expanding the antenna size and initiating alternative electron carriers. The intercept of electrons on the donor side of PSI limited the production of energy, whereas the adjustment of the content and ratio of pigments strengthened microalgal adaptation. Enzymes and genes related to the degradation of exogenous compounds, including cytochrome P450 (P450), glutathione S-transferase (GST) and ABC transporters, mediated the detoxification of antibiotics. The upregulated expression of related genes induced by coexposure increased resistance and explained the antagonistic effects. The shift in energy allocation by increasing the proportion of lipids met the urgent requirements of microalgal physiological activities. This study reemphasizes the modes of interactions between multiple antibiotics and provides new insights into the mechanisms of antagonism induced by combinations of antibiotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信