采用全干法合成高有序Li(Ni0.6Ti0.2Co0.2)O2 (NTC622)正极材料

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Macgregor F. Macintosh , P. Popli , Andrew George , M.N. Obrovac
{"title":"采用全干法合成高有序Li(Ni0.6Ti0.2Co0.2)O2 (NTC622)正极材料","authors":"Macgregor F. Macintosh ,&nbsp;P. Popli ,&nbsp;Andrew George ,&nbsp;M.N. Obrovac","doi":"10.1016/j.ssi.2025.116806","DOIUrl":null,"url":null,"abstract":"<div><div>Phase pure and highly ordered Li(Ni<sub>0.6</sub>Ti<sub>0.2</sub>Co<sub>0.2</sub>)O<sub>2</sub> (NTC622) with the O3 structure was synthesized using an all-dry method from metal oxide precursors. To our knowledge, this is the first report of highly ordered NTC622. A major impediment for NTC622 synthesis was found to be the slow diffusion of Ti during sintering. This was overcome by utilizing high-energy ball milling to maximized homogeneous transition metal distribution. In addition, a pure oxygen atmosphere during the sintering step was found to minimize LiTiO<sub>2</sub> formation. The synthesized NTC622 exhibited a reversible capacity of 120 mAh/g, low voltage polarization, and a discharge capacity retention of 93.7 % after 100 cycles. Additionally, the NTC622 demonstrated comparable high-rate performance to NMC622. This demonstrates that layered oxides with high Ti-content are attractive cathode materials. Additionally, this study shows that all-dry methods are an effective means for composition exploration in layered oxide materials.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116806"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly ordered Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) cathode material made by all-dry synthesis\",\"authors\":\"Macgregor F. Macintosh ,&nbsp;P. Popli ,&nbsp;Andrew George ,&nbsp;M.N. Obrovac\",\"doi\":\"10.1016/j.ssi.2025.116806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phase pure and highly ordered Li(Ni<sub>0.6</sub>Ti<sub>0.2</sub>Co<sub>0.2</sub>)O<sub>2</sub> (NTC622) with the O3 structure was synthesized using an all-dry method from metal oxide precursors. To our knowledge, this is the first report of highly ordered NTC622. A major impediment for NTC622 synthesis was found to be the slow diffusion of Ti during sintering. This was overcome by utilizing high-energy ball milling to maximized homogeneous transition metal distribution. In addition, a pure oxygen atmosphere during the sintering step was found to minimize LiTiO<sub>2</sub> formation. The synthesized NTC622 exhibited a reversible capacity of 120 mAh/g, low voltage polarization, and a discharge capacity retention of 93.7 % after 100 cycles. Additionally, the NTC622 demonstrated comparable high-rate performance to NMC622. This demonstrates that layered oxides with high Ti-content are attractive cathode materials. Additionally, this study shows that all-dry methods are an effective means for composition exploration in layered oxide materials.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"421 \",\"pages\":\"Article 116806\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825000256\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000256","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以金属氧化物为原料,采用全干法制备了具有O3结构的纯相高有序Li(Ni0.6Ti0.2Co0.2)O2 (NTC622)。据我们所知,这是高订货量nct622的第一份报告。烧结过程中Ti的缓慢扩散是影响NTC622合成的主要障碍。通过使用高能球磨来最大限度地均匀过渡金属分布,克服了这一问题。此外,在烧结步骤中发现纯氧气氛可以最大限度地减少lio2的形成。合成的NTC622具有120 mAh/g的可逆容量,低电压极化,100次循环后的放电容量保持率为93.7%。此外,NTC622表现出与NMC622相当的高速率性能。这表明具有高钛含量的层状氧化物是极具吸引力的正极材料。此外,本研究还表明,全干法是层状氧化材料成分勘探的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly ordered Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) cathode material made by all-dry synthesis
Phase pure and highly ordered Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) with the O3 structure was synthesized using an all-dry method from metal oxide precursors. To our knowledge, this is the first report of highly ordered NTC622. A major impediment for NTC622 synthesis was found to be the slow diffusion of Ti during sintering. This was overcome by utilizing high-energy ball milling to maximized homogeneous transition metal distribution. In addition, a pure oxygen atmosphere during the sintering step was found to minimize LiTiO2 formation. The synthesized NTC622 exhibited a reversible capacity of 120 mAh/g, low voltage polarization, and a discharge capacity retention of 93.7 % after 100 cycles. Additionally, the NTC622 demonstrated comparable high-rate performance to NMC622. This demonstrates that layered oxides with high Ti-content are attractive cathode materials. Additionally, this study shows that all-dry methods are an effective means for composition exploration in layered oxide materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信