Xiao Li , Yao Xu , Ting Li , Bocheng Xiong , Xifei Yang , Yan Feng
{"title":"STAT1的下调改善了衰老小鼠的学习和记忆障碍","authors":"Xiao Li , Yao Xu , Ting Li , Bocheng Xiong , Xifei Yang , Yan Feng","doi":"10.1016/j.neulet.2025.138155","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive impairment is a typical hallmark of aging in mice and humans. Here, we reported that downregulation of STAT1 improved learning and memory impairments in aging mice by enhancing the expression of synaptic protein and inhibiting the expression of inflammatory factors. Proteomic analysis revealed 139 differentially expressed proteins (DEPs) in the hippocampus of downregulated-STAT1 aging mice, compared with aging control mice. Functional classification of DEPs indicated that these mainly involved in inflammation, autophagy, synapse, mitochondria and apoptosis. The ClueGo analysis uncovered that the Wiki pathway of these DEPs were involved in proteasome degradation, IL-6 signaling pathway, signaling of hepatocyte growth factor receptor and so on. Taken together, downregulation of STAT1 may delay aging with multiple mechanisms.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"850 ","pages":"Article 138155"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of STAT1 improved learning and memory impairments in aging mice\",\"authors\":\"Xiao Li , Yao Xu , Ting Li , Bocheng Xiong , Xifei Yang , Yan Feng\",\"doi\":\"10.1016/j.neulet.2025.138155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cognitive impairment is a typical hallmark of aging in mice and humans. Here, we reported that downregulation of STAT1 improved learning and memory impairments in aging mice by enhancing the expression of synaptic protein and inhibiting the expression of inflammatory factors. Proteomic analysis revealed 139 differentially expressed proteins (DEPs) in the hippocampus of downregulated-STAT1 aging mice, compared with aging control mice. Functional classification of DEPs indicated that these mainly involved in inflammation, autophagy, synapse, mitochondria and apoptosis. The ClueGo analysis uncovered that the Wiki pathway of these DEPs were involved in proteasome degradation, IL-6 signaling pathway, signaling of hepatocyte growth factor receptor and so on. Taken together, downregulation of STAT1 may delay aging with multiple mechanisms.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"850 \",\"pages\":\"Article 138155\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000436\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Downregulation of STAT1 improved learning and memory impairments in aging mice
Cognitive impairment is a typical hallmark of aging in mice and humans. Here, we reported that downregulation of STAT1 improved learning and memory impairments in aging mice by enhancing the expression of synaptic protein and inhibiting the expression of inflammatory factors. Proteomic analysis revealed 139 differentially expressed proteins (DEPs) in the hippocampus of downregulated-STAT1 aging mice, compared with aging control mice. Functional classification of DEPs indicated that these mainly involved in inflammation, autophagy, synapse, mitochondria and apoptosis. The ClueGo analysis uncovered that the Wiki pathway of these DEPs were involved in proteasome degradation, IL-6 signaling pathway, signaling of hepatocyte growth factor receptor and so on. Taken together, downregulation of STAT1 may delay aging with multiple mechanisms.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.