扩大 BTX 电化学辅助反应吸收的规模

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Bryan A. Tiban-Anrango, Andrea N. Arias-Sánchez, Justo Lobato, Manuel A. Rodrigo
{"title":"扩大 BTX 电化学辅助反应吸收的规模","authors":"Bryan A. Tiban-Anrango,&nbsp;Andrea N. Arias-Sánchez,&nbsp;Justo Lobato,&nbsp;Manuel A. Rodrigo","doi":"10.1016/j.jelechem.2025.118998","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical technologies have proven highly efficient in remediating polluted gas with benzene, toluene, and xylene (BTX). However, their scalability has yet to be explored to determine the best configurations to maintain optimal removals and energetic efficiencies. Here, we report a straightforward scale-up of an electro-absorption process that combines the absorption of BTX in 0.05 M H<sub>2</sub>SO<sub>4</sub> (electrolyte) and their electrochemical oxidation in the electrolyte. The electrochemical cell was upsized by stacking eight single-compartment cells, permitting the circulation of the absorbent in series. The results showed the successful removal of BTX from a synthetic gas stream, which increased at high current densities and low gas flow rates. Average removals over 60 % were achieved in the electro-absorption with 50 mA cm<sup>−2</sup>. Analysis of the contaminants in the electrolyte confirmed the absorption of BTXs and their electrochemical oxidation by mineralisation, which was enhanced at larger gas flows and current densities. Nevertheless, a comparison of equivalent scaled and baseline systems indicated an inferior current efficiency on the larger scale due to mass transfer inefficiencies, which are affected by circulating the absorbent in series. These findings suggest that the replication of single electrochemical cells (parallel) can optimise the performance of the electro-absorption degradation of BTX at larger scales.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"981 ","pages":"Article 118998"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-up of a BTX electrochemically assisted reactive absorption\",\"authors\":\"Bryan A. Tiban-Anrango,&nbsp;Andrea N. Arias-Sánchez,&nbsp;Justo Lobato,&nbsp;Manuel A. Rodrigo\",\"doi\":\"10.1016/j.jelechem.2025.118998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical technologies have proven highly efficient in remediating polluted gas with benzene, toluene, and xylene (BTX). However, their scalability has yet to be explored to determine the best configurations to maintain optimal removals and energetic efficiencies. Here, we report a straightforward scale-up of an electro-absorption process that combines the absorption of BTX in 0.05 M H<sub>2</sub>SO<sub>4</sub> (electrolyte) and their electrochemical oxidation in the electrolyte. The electrochemical cell was upsized by stacking eight single-compartment cells, permitting the circulation of the absorbent in series. The results showed the successful removal of BTX from a synthetic gas stream, which increased at high current densities and low gas flow rates. Average removals over 60 % were achieved in the electro-absorption with 50 mA cm<sup>−2</sup>. Analysis of the contaminants in the electrolyte confirmed the absorption of BTXs and their electrochemical oxidation by mineralisation, which was enhanced at larger gas flows and current densities. Nevertheless, a comparison of equivalent scaled and baseline systems indicated an inferior current efficiency on the larger scale due to mass transfer inefficiencies, which are affected by circulating the absorbent in series. These findings suggest that the replication of single electrochemical cells (parallel) can optimise the performance of the electro-absorption degradation of BTX at larger scales.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"981 \",\"pages\":\"Article 118998\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665725000712\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725000712","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scale-up of a BTX electrochemically assisted reactive absorption

Scale-up of a BTX electrochemically assisted reactive absorption
Electrochemical technologies have proven highly efficient in remediating polluted gas with benzene, toluene, and xylene (BTX). However, their scalability has yet to be explored to determine the best configurations to maintain optimal removals and energetic efficiencies. Here, we report a straightforward scale-up of an electro-absorption process that combines the absorption of BTX in 0.05 M H2SO4 (electrolyte) and their electrochemical oxidation in the electrolyte. The electrochemical cell was upsized by stacking eight single-compartment cells, permitting the circulation of the absorbent in series. The results showed the successful removal of BTX from a synthetic gas stream, which increased at high current densities and low gas flow rates. Average removals over 60 % were achieved in the electro-absorption with 50 mA cm−2. Analysis of the contaminants in the electrolyte confirmed the absorption of BTXs and their electrochemical oxidation by mineralisation, which was enhanced at larger gas flows and current densities. Nevertheless, a comparison of equivalent scaled and baseline systems indicated an inferior current efficiency on the larger scale due to mass transfer inefficiencies, which are affected by circulating the absorbent in series. These findings suggest that the replication of single electrochemical cells (parallel) can optimise the performance of the electro-absorption degradation of BTX at larger scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信