结构可靠性分析的顺序自适应概率集成

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Masaru Kitahara , Pengfei Wei
{"title":"结构可靠性分析的顺序自适应概率集成","authors":"Masaru Kitahara ,&nbsp;Pengfei Wei","doi":"10.1016/j.strusafe.2025.102577","DOIUrl":null,"url":null,"abstract":"<div><div>We propose the application of sequential and adaptive probabilistic integration (SAPI) to the estimation of the probability of failure in structural reliability. SAPI was originally developed to explore the posterior distribution and estimate its normalising constant in Bayesian model updating. The principle is to perform probabilistic integration on a sequence of distributions, moving from the prior to the posterior, to learn the normalising constant of each distribution. In structural reliability, SAPI can be used to sample an approximation of the optimal importance sampling (IS) density, and we present a particular choice of the intermediate distributions. The derived SAPI estimator is thus an IS estimator of the thought probability. The numerical uncertainty is propagated using random process sampling, and the induced posterior statistics are used to design a Bayesian active learning strategy. Four numerical examples demonstrate that SAPI outperforms other state-of-the-art active learning reliability methods using sequential Monte Carlo samplers.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102577"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential and adaptive probabilistic integration for structural reliability analysis\",\"authors\":\"Masaru Kitahara ,&nbsp;Pengfei Wei\",\"doi\":\"10.1016/j.strusafe.2025.102577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose the application of sequential and adaptive probabilistic integration (SAPI) to the estimation of the probability of failure in structural reliability. SAPI was originally developed to explore the posterior distribution and estimate its normalising constant in Bayesian model updating. The principle is to perform probabilistic integration on a sequence of distributions, moving from the prior to the posterior, to learn the normalising constant of each distribution. In structural reliability, SAPI can be used to sample an approximation of the optimal importance sampling (IS) density, and we present a particular choice of the intermediate distributions. The derived SAPI estimator is thus an IS estimator of the thought probability. The numerical uncertainty is propagated using random process sampling, and the induced posterior statistics are used to design a Bayesian active learning strategy. Four numerical examples demonstrate that SAPI outperforms other state-of-the-art active learning reliability methods using sequential Monte Carlo samplers.</div></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"114 \",\"pages\":\"Article 102577\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473025000050\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000050","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

提出了序列自适应概率积分法(SAPI)在结构可靠性失效概率估计中的应用。SAPI最初是为了在贝叶斯模型更新中探索后验分布并估计其归一化常数而开发的。其原理是对一系列分布进行概率积分,从先验到后验,以学习每个分布的归一化常数。在结构可靠性中,SAPI可用于抽样最优重要抽样(IS)密度的近似值,并给出了中间分布的特定选择。因此,导出的SAPI估计量是思想概率的is估计量。采用随机过程抽样方法传播数值不确定性,并利用诱导后验统计量设计贝叶斯主动学习策略。四个数值示例表明,SAPI优于使用顺序蒙特卡罗采样器的其他最先进的主动学习可靠性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential and adaptive probabilistic integration for structural reliability analysis
We propose the application of sequential and adaptive probabilistic integration (SAPI) to the estimation of the probability of failure in structural reliability. SAPI was originally developed to explore the posterior distribution and estimate its normalising constant in Bayesian model updating. The principle is to perform probabilistic integration on a sequence of distributions, moving from the prior to the posterior, to learn the normalising constant of each distribution. In structural reliability, SAPI can be used to sample an approximation of the optimal importance sampling (IS) density, and we present a particular choice of the intermediate distributions. The derived SAPI estimator is thus an IS estimator of the thought probability. The numerical uncertainty is propagated using random process sampling, and the induced posterior statistics are used to design a Bayesian active learning strategy. Four numerical examples demonstrate that SAPI outperforms other state-of-the-art active learning reliability methods using sequential Monte Carlo samplers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信