{"title":"量子化学计算揭示了溶剂对双(环戊二烯基)二氯化锆的性质和振动模式的影响","authors":"Davide Romani , Silvia Antonia Brandán","doi":"10.1016/j.chphi.2025.100848","DOIUrl":null,"url":null,"abstract":"<div><div>B3LYP/6–311++<em>G</em>** calculations for all atoms different from Zr have been performed for bis(cyclopentadienyl)zirconium (IV) dichloride in the gas phase, aqueous and n-hexane solutions to predict structural and vibrational properties and to analyse the impact of solvent on its properties. The results show that the 3–21G* basis set for the Zr generates better correlations than LanL2DZ. Higher solvation energy has been predicted in water than n-hexane. MEP surfaces revealed nucleophilic sites on the Cl atoms of Zr-Cl<sub>2</sub> moiety while electrophilic ones on the positively charged H atoms of (C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> moiety. Higher stability of compound in n-hexane is supported by AIM and NBO calculations. High reactivity of compound in water was observed. Complete vibrational assignments are reported for first time by using the SQMFF methodology and normal internal coordinates. In addition, the scaled harmonic force constants are also reported. Predicted IR, Raman and NMR spectra show reasonable concordances with the experimental ones.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100848"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum chemical calculations reveal impact of solvent on properties and vibration modes of Bis(cyclopentadienyl)zirconium dichloride\",\"authors\":\"Davide Romani , Silvia Antonia Brandán\",\"doi\":\"10.1016/j.chphi.2025.100848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>B3LYP/6–311++<em>G</em>** calculations for all atoms different from Zr have been performed for bis(cyclopentadienyl)zirconium (IV) dichloride in the gas phase, aqueous and n-hexane solutions to predict structural and vibrational properties and to analyse the impact of solvent on its properties. The results show that the 3–21G* basis set for the Zr generates better correlations than LanL2DZ. Higher solvation energy has been predicted in water than n-hexane. MEP surfaces revealed nucleophilic sites on the Cl atoms of Zr-Cl<sub>2</sub> moiety while electrophilic ones on the positively charged H atoms of (C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> moiety. Higher stability of compound in n-hexane is supported by AIM and NBO calculations. High reactivity of compound in water was observed. Complete vibrational assignments are reported for first time by using the SQMFF methodology and normal internal coordinates. In addition, the scaled harmonic force constants are also reported. Predicted IR, Raman and NMR spectra show reasonable concordances with the experimental ones.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100848\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425000362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quantum chemical calculations reveal impact of solvent on properties and vibration modes of Bis(cyclopentadienyl)zirconium dichloride
B3LYP/6–311++G** calculations for all atoms different from Zr have been performed for bis(cyclopentadienyl)zirconium (IV) dichloride in the gas phase, aqueous and n-hexane solutions to predict structural and vibrational properties and to analyse the impact of solvent on its properties. The results show that the 3–21G* basis set for the Zr generates better correlations than LanL2DZ. Higher solvation energy has been predicted in water than n-hexane. MEP surfaces revealed nucleophilic sites on the Cl atoms of Zr-Cl2 moiety while electrophilic ones on the positively charged H atoms of (C5H5)2 moiety. Higher stability of compound in n-hexane is supported by AIM and NBO calculations. High reactivity of compound in water was observed. Complete vibrational assignments are reported for first time by using the SQMFF methodology and normal internal coordinates. In addition, the scaled harmonic force constants are also reported. Predicted IR, Raman and NMR spectra show reasonable concordances with the experimental ones.