Narayana多项式和Motzkin多项式的新改进

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Janet J.W. Dong , Lora R. Du , Kathy Q. Ji , Dax T.X. Zhang
{"title":"Narayana多项式和Motzkin多项式的新改进","authors":"Janet J.W. Dong ,&nbsp;Lora R. Du ,&nbsp;Kathy Q. Ji ,&nbsp;Dax T.X. Zhang","doi":"10.1016/j.aam.2025.102855","DOIUrl":null,"url":null,"abstract":"<div><div>Chen, Deutsch and Elizalde introduced a refinement of the Narayana polynomials by distinguishing between old (leftmost child) and young leaves of plane trees. They also provided a refinement of Coker's formula by constructing a bijection. In fact, Coker's formula establishes a connection between the Narayana polynomials and the Motzkin polynomials, which implies the <em>γ</em>-positivity of the Narayana polynomials. In this paper, we introduce the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, which further refines the Narayana polynomials by considering leaves of plane trees that have no siblings. We obtain the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. To achieve further refinement of Coker's formula based on the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, we consider a refinement <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of the Motzkin polynomials by classifying the old leaves of a tip-augmented plane tree into three categories and the young leaves into two categories. The generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is also established, and the refinement of Coker's formula is immediately derived by combining the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We derive several interesting consequences from this refinement of Coker's formula, including the new symmetries of plane trees, Euler transformation of the Narayana polynomials and the Motzkin polynomials due to Lin and Kim and the real-rootedness of the Motzkin polynomials. The method used in this paper is the grammatical approach introduced by Chen. We develop a unified grammatical approach to exploring polynomials associated with the statistics defined on plane trees. The derivations of the generating functions for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> become quite simple once their grammars are established.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"166 ","pages":"Article 102855"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New refinements of Narayana polynomials and Motzkin polynomials\",\"authors\":\"Janet J.W. Dong ,&nbsp;Lora R. Du ,&nbsp;Kathy Q. Ji ,&nbsp;Dax T.X. Zhang\",\"doi\":\"10.1016/j.aam.2025.102855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chen, Deutsch and Elizalde introduced a refinement of the Narayana polynomials by distinguishing between old (leftmost child) and young leaves of plane trees. They also provided a refinement of Coker's formula by constructing a bijection. In fact, Coker's formula establishes a connection between the Narayana polynomials and the Motzkin polynomials, which implies the <em>γ</em>-positivity of the Narayana polynomials. In this paper, we introduce the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, which further refines the Narayana polynomials by considering leaves of plane trees that have no siblings. We obtain the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. To achieve further refinement of Coker's formula based on the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, we consider a refinement <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of the Motzkin polynomials by classifying the old leaves of a tip-augmented plane tree into three categories and the young leaves into two categories. The generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is also established, and the refinement of Coker's formula is immediately derived by combining the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We derive several interesting consequences from this refinement of Coker's formula, including the new symmetries of plane trees, Euler transformation of the Narayana polynomials and the Motzkin polynomials due to Lin and Kim and the real-rootedness of the Motzkin polynomials. The method used in this paper is the grammatical approach introduced by Chen. We develop a unified grammatical approach to exploring polynomials associated with the statistics defined on plane trees. The derivations of the generating functions for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> become quite simple once their grammars are established.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"166 \",\"pages\":\"Article 102855\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582500017X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500017X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Chen, Deutsch和Elizalde通过区分梧桐树的老叶(最左边的子叶)和嫩叶引入了Narayana多项式的改进。他们还通过构造双射对科克公式进行了改进。事实上,Coker的公式建立了Narayana多项式和Motzkin多项式之间的联系,这意味着Narayana多项式的γ正性。在本文中,我们引入了多项式Gn(x11,x12,x2;y11,y12,y2),它通过考虑没有兄弟树的平面树的叶子进一步改进了Narayana多项式。我们得到了Gn(x11,x12,x2;y11,y12,y2)的生成函数。为了实现基于多项式Gn(x11,x12,x2;y11,y12,y2)的Coker公式的进一步细化,我们考虑对Motzkin多项式进行细化Mn(u1,u2,u3;v1,v2),将尖端增广平面树的老叶分为三类,将嫩叶分为两类。建立了Mn(u1,u2,u3;v1,v2)的生成函数,将Gn(x11,x12,x2;y11,y12,y2)的生成函数与Mn(u1,u2,u3;v1,v2)的生成函数结合,立即推导出Coker公式的细化。我们从Coker公式的改进中得到了几个有趣的结果,包括平面树的新对称性,由Lin和Kim引起的Narayana多项式和Motzkin多项式的欧拉变换,以及Motzkin多项式的实根性。本文使用的方法是Chen介绍的语法方法。我们开发了一种统一的语法方法来探索与平面树上定义的统计相关的多项式。Gn(x11,x12,x2;y11,y12,y2)和Mn(u1,u2,u3;v1,v2)的生成函数一旦建立了语法,推导就变得非常简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New refinements of Narayana polynomials and Motzkin polynomials
Chen, Deutsch and Elizalde introduced a refinement of the Narayana polynomials by distinguishing between old (leftmost child) and young leaves of plane trees. They also provided a refinement of Coker's formula by constructing a bijection. In fact, Coker's formula establishes a connection between the Narayana polynomials and the Motzkin polynomials, which implies the γ-positivity of the Narayana polynomials. In this paper, we introduce the polynomial Gn(x11,x12,x2;y11,y12,y2), which further refines the Narayana polynomials by considering leaves of plane trees that have no siblings. We obtain the generating function for Gn(x11,x12,x2;y11,y12,y2). To achieve further refinement of Coker's formula based on the polynomial Gn(x11,x12,x2;y11,y12,y2), we consider a refinement Mn(u1,u2,u3;v1,v2) of the Motzkin polynomials by classifying the old leaves of a tip-augmented plane tree into three categories and the young leaves into two categories. The generating function for Mn(u1,u2,u3;v1,v2) is also established, and the refinement of Coker's formula is immediately derived by combining the generating function for Gn(x11,x12,x2;y11,y12,y2) and the generating function for Mn(u1,u2,u3;v1,v2). We derive several interesting consequences from this refinement of Coker's formula, including the new symmetries of plane trees, Euler transformation of the Narayana polynomials and the Motzkin polynomials due to Lin and Kim and the real-rootedness of the Motzkin polynomials. The method used in this paper is the grammatical approach introduced by Chen. We develop a unified grammatical approach to exploring polynomials associated with the statistics defined on plane trees. The derivations of the generating functions for Gn(x11,x12,x2;y11,y12,y2) and Mn(u1,u2,u3;v1,v2) become quite simple once their grammars are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信