Shahram Parvin , Hasan Bagheri , Raheleh Halabian , Masoud Arabfard , Ali Ghazvini , Ensieh Vahedi , Ali Najafi , Mostafa Ghanei
{"title":"芥子气暴露下外周血单个核细胞的综合转录组学分析","authors":"Shahram Parvin , Hasan Bagheri , Raheleh Halabian , Masoud Arabfard , Ali Ghazvini , Ensieh Vahedi , Ali Najafi , Mostafa Ghanei","doi":"10.1016/j.intimp.2025.114197","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Sulfur mustard (SM) is a substance that causes blisters and has been repeatedly used by Iraq in chemical warfare against more than 100,000 Iranians. The main issue for these people is various pulmonary problems similar to chronic obstructive pulmonary disease (COPD).</div></div><div><h3>Materials and methods</h3><div>Our study analyzed the total RNA profile extracted using the RNA-seq technique from peripheral blood mononuclear cells (PBMCs) isolated from Mustard Lung (ML) patients of all three groups (Severe, Moderate, and Mild) in terms of disease in healthy control (HC) subjects on the BGISEQ platform (Paired-end, 7 GB data, and rRNA depletion). However, given the severe group’s importance in clinical problems, we prioritized studying this group. Differentially expressed genes (DEGs) of the severe group versus HC were obtained using the <em>limma</em> package. DEGs were analyzed through bioinformatics tools, and their gene ontology (GO) and enrichment analysis (EA) were evaluated. Then, String-db and Cytoscape tools were used to search for the most important functional genes.</div></div><div><h3>Results</h3><div>We identified <em>SERPINA1</em>, <em>MAPK3</em>, <em>MMP9</em>, <em>FOXO3</em>, <em>SLC4A1</em>, <em>FCGR3B</em>, <em>CXCR2</em>, <em>PTGS2</em>, <em>HBA2</em>, <em>GPX1</em>, <em>IL1RN</em>, <em>IFNG</em>, <em>RPS29</em>, <em>CXCL1</em>, <em>FPR1</em>, and <em>RPS9</em> genes using hub and bottleneck criteria. Based on the analysis of important genes, several biological pathways were identified, including innate immunity, inflammatory response, and activation of neutrophils, cellular response to cytokines, and cellular response to oxidative stress, lipoxygenase pathway, and macrophage differentiation.</div></div><div><h3>Conclusion</h3><div>Innate immunity and neutrophils play a crucial role in the pathogenesis of these individuals. The signaling pathways of interleukins 4, 10, and 13 stimulate the differentiation of lung macrophages (MQs) into M2, essential for repair, remodeling, and inflammation. Additionally, reactive oxygen species (ROS) activate Protein kinase B (PKB), also known as AKT, through Phosphoinositide 3-kinases (PI3K) and increase the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which results in decreased histone deacetylase 2 (HDAC2) being one of the important pathways of pathophysiology in these patients.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"150 ","pages":"Article 114197"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive transcriptomics analysis of peripheral blood mononuclear cells in exposure to mustard gas\",\"authors\":\"Shahram Parvin , Hasan Bagheri , Raheleh Halabian , Masoud Arabfard , Ali Ghazvini , Ensieh Vahedi , Ali Najafi , Mostafa Ghanei\",\"doi\":\"10.1016/j.intimp.2025.114197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Sulfur mustard (SM) is a substance that causes blisters and has been repeatedly used by Iraq in chemical warfare against more than 100,000 Iranians. The main issue for these people is various pulmonary problems similar to chronic obstructive pulmonary disease (COPD).</div></div><div><h3>Materials and methods</h3><div>Our study analyzed the total RNA profile extracted using the RNA-seq technique from peripheral blood mononuclear cells (PBMCs) isolated from Mustard Lung (ML) patients of all three groups (Severe, Moderate, and Mild) in terms of disease in healthy control (HC) subjects on the BGISEQ platform (Paired-end, 7 GB data, and rRNA depletion). However, given the severe group’s importance in clinical problems, we prioritized studying this group. Differentially expressed genes (DEGs) of the severe group versus HC were obtained using the <em>limma</em> package. DEGs were analyzed through bioinformatics tools, and their gene ontology (GO) and enrichment analysis (EA) were evaluated. Then, String-db and Cytoscape tools were used to search for the most important functional genes.</div></div><div><h3>Results</h3><div>We identified <em>SERPINA1</em>, <em>MAPK3</em>, <em>MMP9</em>, <em>FOXO3</em>, <em>SLC4A1</em>, <em>FCGR3B</em>, <em>CXCR2</em>, <em>PTGS2</em>, <em>HBA2</em>, <em>GPX1</em>, <em>IL1RN</em>, <em>IFNG</em>, <em>RPS29</em>, <em>CXCL1</em>, <em>FPR1</em>, and <em>RPS9</em> genes using hub and bottleneck criteria. Based on the analysis of important genes, several biological pathways were identified, including innate immunity, inflammatory response, and activation of neutrophils, cellular response to cytokines, and cellular response to oxidative stress, lipoxygenase pathway, and macrophage differentiation.</div></div><div><h3>Conclusion</h3><div>Innate immunity and neutrophils play a crucial role in the pathogenesis of these individuals. The signaling pathways of interleukins 4, 10, and 13 stimulate the differentiation of lung macrophages (MQs) into M2, essential for repair, remodeling, and inflammation. Additionally, reactive oxygen species (ROS) activate Protein kinase B (PKB), also known as AKT, through Phosphoinositide 3-kinases (PI3K) and increase the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which results in decreased histone deacetylase 2 (HDAC2) being one of the important pathways of pathophysiology in these patients.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"150 \",\"pages\":\"Article 114197\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576925001870\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925001870","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Comprehensive transcriptomics analysis of peripheral blood mononuclear cells in exposure to mustard gas
Introduction
Sulfur mustard (SM) is a substance that causes blisters and has been repeatedly used by Iraq in chemical warfare against more than 100,000 Iranians. The main issue for these people is various pulmonary problems similar to chronic obstructive pulmonary disease (COPD).
Materials and methods
Our study analyzed the total RNA profile extracted using the RNA-seq technique from peripheral blood mononuclear cells (PBMCs) isolated from Mustard Lung (ML) patients of all three groups (Severe, Moderate, and Mild) in terms of disease in healthy control (HC) subjects on the BGISEQ platform (Paired-end, 7 GB data, and rRNA depletion). However, given the severe group’s importance in clinical problems, we prioritized studying this group. Differentially expressed genes (DEGs) of the severe group versus HC were obtained using the limma package. DEGs were analyzed through bioinformatics tools, and their gene ontology (GO) and enrichment analysis (EA) were evaluated. Then, String-db and Cytoscape tools were used to search for the most important functional genes.
Results
We identified SERPINA1, MAPK3, MMP9, FOXO3, SLC4A1, FCGR3B, CXCR2, PTGS2, HBA2, GPX1, IL1RN, IFNG, RPS29, CXCL1, FPR1, and RPS9 genes using hub and bottleneck criteria. Based on the analysis of important genes, several biological pathways were identified, including innate immunity, inflammatory response, and activation of neutrophils, cellular response to cytokines, and cellular response to oxidative stress, lipoxygenase pathway, and macrophage differentiation.
Conclusion
Innate immunity and neutrophils play a crucial role in the pathogenesis of these individuals. The signaling pathways of interleukins 4, 10, and 13 stimulate the differentiation of lung macrophages (MQs) into M2, essential for repair, remodeling, and inflammation. Additionally, reactive oxygen species (ROS) activate Protein kinase B (PKB), also known as AKT, through Phosphoinositide 3-kinases (PI3K) and increase the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which results in decreased histone deacetylase 2 (HDAC2) being one of the important pathways of pathophysiology in these patients.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.