升子图分解

IF 1.2 1区 数学 Q1 MATHEMATICS
Kyriakos Katsamaktsis , Shoham Letzter , Alexey Pokrovskiy , Benny Sudakov
{"title":"升子图分解","authors":"Kyriakos Katsamaktsis ,&nbsp;Shoham Letzter ,&nbsp;Alexey Pokrovskiy ,&nbsp;Benny Sudakov","doi":"10.1016/j.jctb.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph <em>G</em> into copies of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges can be decomposed into subgraphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has <em>i</em> edges and is isomorphic to a subgraph of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In this paper we prove this conjecture for sufficiently large <em>m</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 14-44"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ascending subgraph decomposition\",\"authors\":\"Kyriakos Katsamaktsis ,&nbsp;Shoham Letzter ,&nbsp;Alexey Pokrovskiy ,&nbsp;Benny Sudakov\",\"doi\":\"10.1016/j.jctb.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph <em>G</em> into copies of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges can be decomposed into subgraphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has <em>i</em> edges and is isomorphic to a subgraph of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In this paper we prove this conjecture for sufficiently large <em>m</em>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 14-44\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500005X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500005X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于许多著名的分解问题,一个典型的主题是证明将图G分解成H1,…,Hm的副本的一些明显的必要条件也是充分的。1987年,Alavi、Boals、Chartrand、Erdős和Oellerman提出了一个这样的问题。他们推测,每个有(m+12)条边的图的边都可以分解成子图H1,…,Hm,使得每个Hi都有i条边,并且与Hi+1的子图同构。本文在m足够大的情况下证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ascending subgraph decomposition
A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph G into copies of H1,,Hm are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with (m+12) edges can be decomposed into subgraphs H1,,Hm such that each Hi has i edges and is isomorphic to a subgraph of Hi+1. In this paper we prove this conjecture for sufficiently large m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信