{"title":"升子图分解","authors":"Kyriakos Katsamaktsis , Shoham Letzter , Alexey Pokrovskiy , Benny Sudakov","doi":"10.1016/j.jctb.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph <em>G</em> into copies of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges can be decomposed into subgraphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has <em>i</em> edges and is isomorphic to a subgraph of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In this paper we prove this conjecture for sufficiently large <em>m</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 14-44"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ascending subgraph decomposition\",\"authors\":\"Kyriakos Katsamaktsis , Shoham Letzter , Alexey Pokrovskiy , Benny Sudakov\",\"doi\":\"10.1016/j.jctb.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph <em>G</em> into copies of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span> edges can be decomposed into subgraphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has <em>i</em> edges and is isomorphic to a subgraph of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In this paper we prove this conjecture for sufficiently large <em>m</em>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 14-44\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500005X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500005X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A typical theme for many well-known decomposition problems is to show that some obvious necessary conditions for decomposing a graph G into copies of are also sufficient. One such problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured that the edges of every graph with edges can be decomposed into subgraphs such that each has i edges and is isomorphic to a subgraph of . In this paper we prove this conjecture for sufficiently large m.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.