{"title":"具有环境稳定性和自修复性能的热敏人工离子皮肤","authors":"Lidong Wu*, Haiyang Qin, Yuanxin Li, Jinxue Zhao, Mengmeng Sun, Peiyi Li, Xuejing Zhai, Yahui Wen, Xinghai Wang, Chengte Lin and Yuan Li, ","doi":"10.1021/acsami.4c2044510.1021/acsami.4c20445","DOIUrl":null,"url":null,"abstract":"<p >Wearable temperature-sensitive electronic skin enables robots to rapidly detect environmental changes and respond intelligently, thereby reducing temperature-related mechanical failures. Additionally, this temperature-sensitive skin can measure and record the temperature of external objects, broadening its potential applications in the medical field. In this study, we designed a thermally sensitive artificial ionic skin using ionic liquids (ILs) as solvents and carbon nanotubes (CNTs) as thermally conductive fillers. The incorporation of ILs into the polymer network enhances thermal stability, while the CNTs establish dual thermal conduction pathways (CNTs–CNTs and CNTs-polymer chain segments), leading to rapid thermal response times of only 16 s. The initiation of IL dissociation at elevated temperatures boosts carrier density, resulting in a substantial improvement in thermal sensitivity (5%/°C). Furthermore, the skin displays remarkable self-healing properties (90%), thereby extending the lifespan of the skin in practical applications. This kind of skin can stably sense the wearer’s body temperature and environmental temperature and provide an ideal temperature-sensitive and long-term stable new functional material for the development of human skin such as robots.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 6","pages":"9115–9124 9115–9124"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-Sensitive Artificial Ionic Skin with Environmental Stability and Self-Healing Property\",\"authors\":\"Lidong Wu*, Haiyang Qin, Yuanxin Li, Jinxue Zhao, Mengmeng Sun, Peiyi Li, Xuejing Zhai, Yahui Wen, Xinghai Wang, Chengte Lin and Yuan Li, \",\"doi\":\"10.1021/acsami.4c2044510.1021/acsami.4c20445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Wearable temperature-sensitive electronic skin enables robots to rapidly detect environmental changes and respond intelligently, thereby reducing temperature-related mechanical failures. Additionally, this temperature-sensitive skin can measure and record the temperature of external objects, broadening its potential applications in the medical field. In this study, we designed a thermally sensitive artificial ionic skin using ionic liquids (ILs) as solvents and carbon nanotubes (CNTs) as thermally conductive fillers. The incorporation of ILs into the polymer network enhances thermal stability, while the CNTs establish dual thermal conduction pathways (CNTs–CNTs and CNTs-polymer chain segments), leading to rapid thermal response times of only 16 s. The initiation of IL dissociation at elevated temperatures boosts carrier density, resulting in a substantial improvement in thermal sensitivity (5%/°C). Furthermore, the skin displays remarkable self-healing properties (90%), thereby extending the lifespan of the skin in practical applications. This kind of skin can stably sense the wearer’s body temperature and environmental temperature and provide an ideal temperature-sensitive and long-term stable new functional material for the development of human skin such as robots.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 6\",\"pages\":\"9115–9124 9115–9124\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c20445\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c20445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal-Sensitive Artificial Ionic Skin with Environmental Stability and Self-Healing Property
Wearable temperature-sensitive electronic skin enables robots to rapidly detect environmental changes and respond intelligently, thereby reducing temperature-related mechanical failures. Additionally, this temperature-sensitive skin can measure and record the temperature of external objects, broadening its potential applications in the medical field. In this study, we designed a thermally sensitive artificial ionic skin using ionic liquids (ILs) as solvents and carbon nanotubes (CNTs) as thermally conductive fillers. The incorporation of ILs into the polymer network enhances thermal stability, while the CNTs establish dual thermal conduction pathways (CNTs–CNTs and CNTs-polymer chain segments), leading to rapid thermal response times of only 16 s. The initiation of IL dissociation at elevated temperatures boosts carrier density, resulting in a substantial improvement in thermal sensitivity (5%/°C). Furthermore, the skin displays remarkable self-healing properties (90%), thereby extending the lifespan of the skin in practical applications. This kind of skin can stably sense the wearer’s body temperature and environmental temperature and provide an ideal temperature-sensitive and long-term stable new functional material for the development of human skin such as robots.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.