Yixuan Wang, Yanfeng Yin, Binhao Yang, Wenming Tian, Xinyi Yang* and Bo Zou,
{"title":"利用压力调谐π -π堆叠模式增强二维共价有机骨架的多色发射增强","authors":"Yixuan Wang, Yanfeng Yin, Binhao Yang, Wenming Tian, Xinyi Yang* and Bo Zou, ","doi":"10.1021/acs.nanolett.4c0494910.1021/acs.nanolett.4c04949","DOIUrl":null,"url":null,"abstract":"<p >Covalent–organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π–π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF). Intriguingly, the TTI-COF experiences a 24-fold enhancement under a mild pressure of 2.7 GPa compared with the initial state. Joint experimental and theoretical results reveal that the restricted intramolecular chemical bond vibrations and the reduced π–π interactions originating from the offset stacking mode account for the significant pressure-induced emission enhancement. Furthermore, such piezochromic behavior may be ascribed to the decreased energy gap and enhanced intermolecular interaction. Our investigation offers constructive guidelines for designing 2D COF materials with high photoluminescence performance.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 6","pages":"2141–2149 2141–2149"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent–Organic Frameworks via the Pressure-Tuned π–π Stacking Mode\",\"authors\":\"Yixuan Wang, Yanfeng Yin, Binhao Yang, Wenming Tian, Xinyi Yang* and Bo Zou, \",\"doi\":\"10.1021/acs.nanolett.4c0494910.1021/acs.nanolett.4c04949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Covalent–organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π–π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF). Intriguingly, the TTI-COF experiences a 24-fold enhancement under a mild pressure of 2.7 GPa compared with the initial state. Joint experimental and theoretical results reveal that the restricted intramolecular chemical bond vibrations and the reduced π–π interactions originating from the offset stacking mode account for the significant pressure-induced emission enhancement. Furthermore, such piezochromic behavior may be ascribed to the decreased energy gap and enhanced intermolecular interaction. Our investigation offers constructive guidelines for designing 2D COF materials with high photoluminescence performance.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 6\",\"pages\":\"2141–2149 2141–2149\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04949\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04949","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent–Organic Frameworks via the Pressure-Tuned π–π Stacking Mode
Covalent–organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π–π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF). Intriguingly, the TTI-COF experiences a 24-fold enhancement under a mild pressure of 2.7 GPa compared with the initial state. Joint experimental and theoretical results reveal that the restricted intramolecular chemical bond vibrations and the reduced π–π interactions originating from the offset stacking mode account for the significant pressure-induced emission enhancement. Furthermore, such piezochromic behavior may be ascribed to the decreased energy gap and enhanced intermolecular interaction. Our investigation offers constructive guidelines for designing 2D COF materials with high photoluminescence performance.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.