{"title":"一步原位制备铕掺杂TiO2涂层增强巨噬细胞极化和种植体骨整合","authors":"Baoping Zhang*, Huidan Qu, Zhidong Zhang, Xinyu Wang, Zhihao Dou, Xinjie Li, Rui Cao, Kailiang Zhang, Jingxiang Zhang* and Qiangqiang Zhang*, ","doi":"10.1021/acsami.4c1749510.1021/acsami.4c17495","DOIUrl":null,"url":null,"abstract":"<p >The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide–europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) <i>via</i> a one-step process combining microarc oxidation (MAO) and <i>in situ</i> doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO<sub>2</sub> coatings without altering their morphology. The presence of Eu effectively stimulated calcium influx in macrophages and activated β-catenin through the wnt/β-catenin signaling pathway. Consequently, macrophage M2 polarization was accelerated through the overexpression of prostaglandin E2 (PGE2). Additionally, Ca<sup>2+</sup> promoted the osteogenic differentiation of MC3T3-E1 cells through the synergistic upregulation of transcription factors (<i>e.g.</i>, AP-1, BMP-2). <i>In vivo</i> studies demonstrated that MAO/Eu coatings significantly enhanced osseointegration compared with the titanium alloy group. Therefore, MAO/Eu shows promising potential as an ideal coating for implants that offers effective immunomodulatory strategies and improves bone integration.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 6","pages":"8886–8900 8886–8900"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eu-Doped TiO2 Coatings via One-Step In Situ Preparation Enhance Macrophage Polarization and Osseointegration of Implants\",\"authors\":\"Baoping Zhang*, Huidan Qu, Zhidong Zhang, Xinyu Wang, Zhihao Dou, Xinjie Li, Rui Cao, Kailiang Zhang, Jingxiang Zhang* and Qiangqiang Zhang*, \",\"doi\":\"10.1021/acsami.4c1749510.1021/acsami.4c17495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide–europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) <i>via</i> a one-step process combining microarc oxidation (MAO) and <i>in situ</i> doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO<sub>2</sub> coatings without altering their morphology. The presence of Eu effectively stimulated calcium influx in macrophages and activated β-catenin through the wnt/β-catenin signaling pathway. Consequently, macrophage M2 polarization was accelerated through the overexpression of prostaglandin E2 (PGE2). Additionally, Ca<sup>2+</sup> promoted the osteogenic differentiation of MC3T3-E1 cells through the synergistic upregulation of transcription factors (<i>e.g.</i>, AP-1, BMP-2). <i>In vivo</i> studies demonstrated that MAO/Eu coatings significantly enhanced osseointegration compared with the titanium alloy group. Therefore, MAO/Eu shows promising potential as an ideal coating for implants that offers effective immunomodulatory strategies and improves bone integration.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 6\",\"pages\":\"8886–8900 8886–8900\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c17495\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c17495","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Eu-Doped TiO2 Coatings via One-Step In Situ Preparation Enhance Macrophage Polarization and Osseointegration of Implants
The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide–europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) via a one-step process combining microarc oxidation (MAO) and in situ doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO2 coatings without altering their morphology. The presence of Eu effectively stimulated calcium influx in macrophages and activated β-catenin through the wnt/β-catenin signaling pathway. Consequently, macrophage M2 polarization was accelerated through the overexpression of prostaglandin E2 (PGE2). Additionally, Ca2+ promoted the osteogenic differentiation of MC3T3-E1 cells through the synergistic upregulation of transcription factors (e.g., AP-1, BMP-2). In vivo studies demonstrated that MAO/Eu coatings significantly enhanced osseointegration compared with the titanium alloy group. Therefore, MAO/Eu shows promising potential as an ideal coating for implants that offers effective immunomodulatory strategies and improves bone integration.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.