通过优化相场模型揭示了不同热条件下锂沉积机理

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guowei Tang, Libo Men, Yilin Wang, Rong Xu and Yucan Peng*, 
{"title":"通过优化相场模型揭示了不同热条件下锂沉积机理","authors":"Guowei Tang,&nbsp;Libo Men,&nbsp;Yilin Wang,&nbsp;Rong Xu and Yucan Peng*,&nbsp;","doi":"10.1021/acs.nanolett.4c0650510.1021/acs.nanolett.4c06505","DOIUrl":null,"url":null,"abstract":"<p >As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like. We found that a high temperature or dispersed hot spots are more conducive to stable battery operation than a low temperature or concentrated hot spots due to the enhanced diffusion kinetics at the high temperature and the more uniform temperature distribution of dispersed hot spots. We believe our work can provide a useful tool for further exploring the thermal effect on stable lithium metal battery operation.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 6","pages":"2561–2567 2561–2567"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium Deposition Mechanism under Different Thermal Conditions Unraveled via an Optimized Phase Field Model\",\"authors\":\"Guowei Tang,&nbsp;Libo Men,&nbsp;Yilin Wang,&nbsp;Rong Xu and Yucan Peng*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0650510.1021/acs.nanolett.4c06505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like. We found that a high temperature or dispersed hot spots are more conducive to stable battery operation than a low temperature or concentrated hot spots due to the enhanced diffusion kinetics at the high temperature and the more uniform temperature distribution of dispersed hot spots. We believe our work can provide a useful tool for further exploring the thermal effect on stable lithium metal battery operation.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 6\",\"pages\":\"2561–2567 2561–2567\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06505\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

温度作为电池运行中最重要的物理场之一,对锂枝晶生长的调控作用值得深入研究。本文建立了一个优化的相场模型,探讨温度对锂金属电池中锂枝晶生长的影响。我们将完整的锂沉积动力学纳入模型,包括原子扩散和界面动力学中的固体电解质界面限制,并揭示了它们在决定锂沉积形态从苔藓状转变为枝晶状的意义。我们发现高温或分散的热点比低温或集中的热点更有利于电池的稳定运行,因为高温下的扩散动力学增强,分散的热点温度分布更均匀。我们相信我们的工作可以为进一步探索锂金属电池稳定运行的热效应提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium Deposition Mechanism under Different Thermal Conditions Unraveled via an Optimized Phase Field Model

Lithium Deposition Mechanism under Different Thermal Conditions Unraveled via an Optimized Phase Field Model

As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like. We found that a high temperature or dispersed hot spots are more conducive to stable battery operation than a low temperature or concentrated hot spots due to the enhanced diffusion kinetics at the high temperature and the more uniform temperature distribution of dispersed hot spots. We believe our work can provide a useful tool for further exploring the thermal effect on stable lithium metal battery operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信