{"title":"HIF-1α/ ho -1介导的铁凋亡参与聚苯乙烯纳米塑料诱导的代际心脏毒性","authors":"Ruiqiong Li, Xifeng Wang, Jinjin Zhang, Yinchu Hu, Yuxin Yang, Ying Zhang, Boqing Li, Meidi Shen, Chongkun Wang, Yuanyuan Yang, Xiaodong Song*, Lihua Ren* and Lianshuang Zhang*, ","doi":"10.1021/acs.nanolett.4c0537210.1021/acs.nanolett.4c05372","DOIUrl":null,"url":null,"abstract":"<p >To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity. Key features of ferroptosis, including Fe<sup>2+</sup> accumulation, mitochondrial injury, oxidative stress, GPX4 downregulation, and FTH1, ACSL4, and SLC7A11 upregulation, were detected. Furthermore, PS-NP treatment upregulated the expressions of HIF-1α and HO-1, and PS-NP-induced ferroptosis can be alleviated by inhibition of HIF-1α using si-HIF-1α. This study provided an insightful reference for the intergenerational cardiotoxicity assessment of PS-NP.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 6","pages":"2226–2235 2226–2235"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIF-1α/HO-1-Mediated Ferroptosis Participates in Polystyrene Nanoplastics-Induced Intergenerational Cardiotoxicity\",\"authors\":\"Ruiqiong Li, Xifeng Wang, Jinjin Zhang, Yinchu Hu, Yuxin Yang, Ying Zhang, Boqing Li, Meidi Shen, Chongkun Wang, Yuanyuan Yang, Xiaodong Song*, Lihua Ren* and Lianshuang Zhang*, \",\"doi\":\"10.1021/acs.nanolett.4c0537210.1021/acs.nanolett.4c05372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity. Key features of ferroptosis, including Fe<sup>2+</sup> accumulation, mitochondrial injury, oxidative stress, GPX4 downregulation, and FTH1, ACSL4, and SLC7A11 upregulation, were detected. Furthermore, PS-NP treatment upregulated the expressions of HIF-1α and HO-1, and PS-NP-induced ferroptosis can be alleviated by inhibition of HIF-1α using si-HIF-1α. This study provided an insightful reference for the intergenerational cardiotoxicity assessment of PS-NP.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 6\",\"pages\":\"2226–2235 2226–2235\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05372\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05372","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
HIF-1α/HO-1-Mediated Ferroptosis Participates in Polystyrene Nanoplastics-Induced Intergenerational Cardiotoxicity
To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity. Key features of ferroptosis, including Fe2+ accumulation, mitochondrial injury, oxidative stress, GPX4 downregulation, and FTH1, ACSL4, and SLC7A11 upregulation, were detected. Furthermore, PS-NP treatment upregulated the expressions of HIF-1α and HO-1, and PS-NP-induced ferroptosis can be alleviated by inhibition of HIF-1α using si-HIF-1α. This study provided an insightful reference for the intergenerational cardiotoxicity assessment of PS-NP.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.