{"title":"基于自愈分子晶体的热弹性扭转辅助晶体跳跃","authors":"Zhihua Wang, Puxin Cheng, Wenqing Han, Rongchao Shi, Jian Xu, Yongshen Zheng, Jialiang Xu, Xian-He Bu","doi":"10.1073/pnas.2417901122","DOIUrl":null,"url":null,"abstract":"Adaptive crystals have attracted significant attention from solid-state chemists and crystal engineers for their promising applications in memories, capacitors, sensors, and actuators. Among them, thermosalient crystals are particularly favored thanks to their efficient energy conversions and rapid responses. However, the mechanisms for the mechanical responses of thermosalient crystals remain largely unclear. Herein we demonstrate that thermosalient effects of molecular crystals could be driven by thermoelastic twisting behaviors. The crystal, based on a model compound with rigid dibenzothiophene sulfone planes and flexible ethoxy chains, can spontaneously self-heal from mechanical fractures. Upon heating, the crystal undergoes remarkable thermosalient behaviors driven by a distinctive left- or right-handed twisting. This thermoelastic twisting converts thermal energy into elastic potential energy, which is further released as kinetic energy upon untwisting to drive the crystal jump. Our demonstration on thermoelastic twisting–induced crystal jumping offers a different perspective on the origins of thermosalient crystals and could provide inspiration for future engineering and application of dynamic molecular crystals.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"2 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelastic twisting–assisted crystal jumping based on a self-healing molecular crystal\",\"authors\":\"Zhihua Wang, Puxin Cheng, Wenqing Han, Rongchao Shi, Jian Xu, Yongshen Zheng, Jialiang Xu, Xian-He Bu\",\"doi\":\"10.1073/pnas.2417901122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive crystals have attracted significant attention from solid-state chemists and crystal engineers for their promising applications in memories, capacitors, sensors, and actuators. Among them, thermosalient crystals are particularly favored thanks to their efficient energy conversions and rapid responses. However, the mechanisms for the mechanical responses of thermosalient crystals remain largely unclear. Herein we demonstrate that thermosalient effects of molecular crystals could be driven by thermoelastic twisting behaviors. The crystal, based on a model compound with rigid dibenzothiophene sulfone planes and flexible ethoxy chains, can spontaneously self-heal from mechanical fractures. Upon heating, the crystal undergoes remarkable thermosalient behaviors driven by a distinctive left- or right-handed twisting. This thermoelastic twisting converts thermal energy into elastic potential energy, which is further released as kinetic energy upon untwisting to drive the crystal jump. Our demonstration on thermoelastic twisting–induced crystal jumping offers a different perspective on the origins of thermosalient crystals and could provide inspiration for future engineering and application of dynamic molecular crystals.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2417901122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417901122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Thermoelastic twisting–assisted crystal jumping based on a self-healing molecular crystal
Adaptive crystals have attracted significant attention from solid-state chemists and crystal engineers for their promising applications in memories, capacitors, sensors, and actuators. Among them, thermosalient crystals are particularly favored thanks to their efficient energy conversions and rapid responses. However, the mechanisms for the mechanical responses of thermosalient crystals remain largely unclear. Herein we demonstrate that thermosalient effects of molecular crystals could be driven by thermoelastic twisting behaviors. The crystal, based on a model compound with rigid dibenzothiophene sulfone planes and flexible ethoxy chains, can spontaneously self-heal from mechanical fractures. Upon heating, the crystal undergoes remarkable thermosalient behaviors driven by a distinctive left- or right-handed twisting. This thermoelastic twisting converts thermal energy into elastic potential energy, which is further released as kinetic energy upon untwisting to drive the crystal jump. Our demonstration on thermoelastic twisting–induced crystal jumping offers a different perspective on the origins of thermosalient crystals and could provide inspiration for future engineering and application of dynamic molecular crystals.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.