时频量程的自引导断层扫描

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Laura Serino, Markus Rambach, Benjamin Brecht, Jacquiline Romero and Christine Silberhorn
{"title":"时频量程的自引导断层扫描","authors":"Laura Serino, Markus Rambach, Benjamin Brecht, Jacquiline Romero and Christine Silberhorn","doi":"10.1088/2058-9565/adb0ea","DOIUrl":null,"url":null,"abstract":"High-dimensional time-frequency encodings have the potential to significantly advance quantum information science; however, practical applications require precise knowledge of the encoded quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need for calibration or post-processing. We demonstrate the robustness of SGT against statistical and environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum information applications.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"79 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-guided tomography of time-frequency qudits\",\"authors\":\"Laura Serino, Markus Rambach, Benjamin Brecht, Jacquiline Romero and Christine Silberhorn\",\"doi\":\"10.1088/2058-9565/adb0ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional time-frequency encodings have the potential to significantly advance quantum information science; however, practical applications require precise knowledge of the encoded quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need for calibration or post-processing. We demonstrate the robustness of SGT against statistical and environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum information applications.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adb0ea\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adb0ea","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高维时频编码具有显著推进量子信息科学的潜力;然而,实际应用需要精确的编码量子态知识,这对于更大的希尔伯特空间来说变得越来越具有挑战性。自引导断层扫描(SGT)作为一种实用的、可扩展的技术在空间领域中应运而生。在这里,我们使用多输出量子脉冲门应用SGT来估计时频状态。我们在不需要校准或后处理的情况下实现了超过99%的三维和五维状态保真度。我们证明了SGT对统计和环境噪声的鲁棒性,突出了它在量子信息应用中典型的光子匮乏状态下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-guided tomography of time-frequency qudits
High-dimensional time-frequency encodings have the potential to significantly advance quantum information science; however, practical applications require precise knowledge of the encoded quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need for calibration or post-processing. We demonstrate the robustness of SGT against statistical and environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum information applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信