Sizheng Ma, Kyle C Nelli, Jordan Moxon, Mark A Scheel, Nils Deppe, Lawrence E Kidder, William Throwe and Nils L Vu
{"title":"柯西特征演化的爱因斯坦-克莱因-戈登系统:记忆计算和环落尾","authors":"Sizheng Ma, Kyle C Nelli, Jordan Moxon, Mark A Scheel, Nils Deppe, Lawrence E Kidder, William Throwe and Nils L Vu","doi":"10.1088/1361-6382/adaf6f","DOIUrl":null,"url":null,"abstract":"Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( ) in scalar fields at future null infinity, in contrast to the tail at future timelike infinity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Einstein–Klein–Gordon system via Cauchy-characteristic evolution: computation of memory and ringdown tail\",\"authors\":\"Sizheng Ma, Kyle C Nelli, Jordan Moxon, Mark A Scheel, Nils Deppe, Lawrence E Kidder, William Throwe and Nils L Vu\",\"doi\":\"10.1088/1361-6382/adaf6f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( ) in scalar fields at future null infinity, in contrast to the tail at future timelike infinity.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adaf6f\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adaf6f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Einstein–Klein–Gordon system via Cauchy-characteristic evolution: computation of memory and ringdown tail
Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( ) in scalar fields at future null infinity, in contrast to the tail at future timelike infinity.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.