磷胆碱两性离子修饰硅胶的溶胶-凝胶合成

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bricker D. Like, Matthew J. Panzer
{"title":"磷胆碱两性离子修饰硅胶的溶胶-凝胶合成","authors":"Bricker D. Like, Matthew J. Panzer","doi":"10.1021/acs.langmuir.4c04719","DOIUrl":null,"url":null,"abstract":"Zwitterion-functionalized silica particles are desirable as antifouling, highly hydrated, biocompatible materials. Existing methods to covalently attach zwitterionic groups to the silica particle surface generally require significant synthesis and purification procedures, and these have largely tended to focus on sulfobetaine-type zwitterionic moieties. This work describes a simple, one-pot, acid-catalyzed sol–gel synthesis approach to create phosphorylcholine (PC)-type zwitterionic silica gels via the condensation of hydroxyl groups on L-α-glycerophosphorylcholine (GPC) with silanol groups generated during the sol–gel reaction. The approach was successfully employed to create both PC-modified xerogels and ionogels (ionic liquid electrolyte-rich silica-supported gels). Silica gel particle morphologies and surfaces were characterized using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). EDS data revealed the presence of approximately 2–3 wt % phosphorus (from GPC) on all silica surfaces after thoroughly washing them postreaction. PC-functionalized ionogels displayed shear-thinning behavior and an approximately 2 to 4-fold increase in shear viscosity versus the control ionogel synthesized without GPC, while thermal analysis indicated that all ionogels yielded similar total silica content (5–7 wt %). This study indicates the promise of a simple, one-pot method for generating PC-decorated silica gels and presents future design possibilities for other novel materials leveraging zwitterionic molecules that possess hydroxyl groups.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"62 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol–Gel Synthesis of Phosphorylcholine Zwitterion-Decorated Silica Gels\",\"authors\":\"Bricker D. Like, Matthew J. Panzer\",\"doi\":\"10.1021/acs.langmuir.4c04719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zwitterion-functionalized silica particles are desirable as antifouling, highly hydrated, biocompatible materials. Existing methods to covalently attach zwitterionic groups to the silica particle surface generally require significant synthesis and purification procedures, and these have largely tended to focus on sulfobetaine-type zwitterionic moieties. This work describes a simple, one-pot, acid-catalyzed sol–gel synthesis approach to create phosphorylcholine (PC)-type zwitterionic silica gels via the condensation of hydroxyl groups on L-α-glycerophosphorylcholine (GPC) with silanol groups generated during the sol–gel reaction. The approach was successfully employed to create both PC-modified xerogels and ionogels (ionic liquid electrolyte-rich silica-supported gels). Silica gel particle morphologies and surfaces were characterized using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). EDS data revealed the presence of approximately 2–3 wt % phosphorus (from GPC) on all silica surfaces after thoroughly washing them postreaction. PC-functionalized ionogels displayed shear-thinning behavior and an approximately 2 to 4-fold increase in shear viscosity versus the control ionogel synthesized without GPC, while thermal analysis indicated that all ionogels yielded similar total silica content (5–7 wt %). This study indicates the promise of a simple, one-pot method for generating PC-decorated silica gels and presents future design possibilities for other novel materials leveraging zwitterionic molecules that possess hydroxyl groups.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04719\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04719","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

两性离子功能化二氧化硅颗粒是理想的防污、高水合、生物相容性材料。现有的将两性离子基团共价连接到二氧化硅颗粒表面的方法通常需要大量的合成和纯化过程,这些方法很大程度上倾向于集中在磺胺甜菜碱型两性离子基团上。本工作描述了一种简单的,一锅,酸催化的溶胶-凝胶合成方法,通过在L-α-甘油酰胆碱(GPC)上的羟基与在溶胶-凝胶反应中产生的硅醇基缩合来制备磷胆碱(PC)型两性离子硅胶。该方法被成功地用于制造pc修饰的干凝胶和离子凝胶(富含电解质的离子液体-二氧化硅支撑凝胶)。利用扫描电子显微镜(SEM)和x射线能谱(EDS)对硅胶颗粒的形貌和表面进行了表征。EDS数据显示,经过彻底清洗后,所有二氧化硅表面上都存在约2-3 wt %的磷(来自GPC)。与不含GPC的对照离子凝胶相比,pc功能化的离子凝胶表现出剪切变薄的行为,剪切粘度增加了约2至4倍,而热分析表明,所有的离子凝胶产生了相似的总二氧化硅含量(5-7 wt %)。这项研究表明,一种简单的一锅方法有望生成pc修饰的硅胶,并为利用具有羟基的两性离子分子的其他新型材料提供了未来的设计可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sol–Gel Synthesis of Phosphorylcholine Zwitterion-Decorated Silica Gels

Sol–Gel Synthesis of Phosphorylcholine Zwitterion-Decorated Silica Gels
Zwitterion-functionalized silica particles are desirable as antifouling, highly hydrated, biocompatible materials. Existing methods to covalently attach zwitterionic groups to the silica particle surface generally require significant synthesis and purification procedures, and these have largely tended to focus on sulfobetaine-type zwitterionic moieties. This work describes a simple, one-pot, acid-catalyzed sol–gel synthesis approach to create phosphorylcholine (PC)-type zwitterionic silica gels via the condensation of hydroxyl groups on L-α-glycerophosphorylcholine (GPC) with silanol groups generated during the sol–gel reaction. The approach was successfully employed to create both PC-modified xerogels and ionogels (ionic liquid electrolyte-rich silica-supported gels). Silica gel particle morphologies and surfaces were characterized using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). EDS data revealed the presence of approximately 2–3 wt % phosphorus (from GPC) on all silica surfaces after thoroughly washing them postreaction. PC-functionalized ionogels displayed shear-thinning behavior and an approximately 2 to 4-fold increase in shear viscosity versus the control ionogel synthesized without GPC, while thermal analysis indicated that all ionogels yielded similar total silica content (5–7 wt %). This study indicates the promise of a simple, one-pot method for generating PC-decorated silica gels and presents future design possibilities for other novel materials leveraging zwitterionic molecules that possess hydroxyl groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信