He Gao, Yao Liu, Zhaiyi Liu, Pengquan Wang, Zhaoyin Qin, Shuanglin Liao, Jia Mo, Lin Wang, Hsiang-Chen Chui
{"title":"双波长低能级激光治疗促进小鼠毛发再生的比较研究。","authors":"He Gao, Yao Liu, Zhaiyi Liu, Pengquan Wang, Zhaoyin Qin, Shuanglin Liao, Jia Mo, Lin Wang, Hsiang-Chen Chui","doi":"10.1002/jbio.202400523","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Low-level laser therapy (LLLT) is a non-invasive treatment that uses low-power lasers or light sources to stimulate biological responses. Previous studies focused on single-wavelength effects on hair growth in mice. In this study, we investigated dual-wavelength combinations to enhance hair regrowth. Using light-emitting diodes (LEDs) at 670, 680, 780, and 880 nm, we assessed the correlation between different wavelength pairs and hair regrowth after shaving in mice. Phototherapy was conducted over 14 days, with results analyzed through surface image analysis and histological examination. Our findings indicate that dual-wavelength therapy is superior to single-wavelength treatment and significantly more effective than the untreated control, demonstrating its potential for improved hair regrowth.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Hair Regrowth Through Dual-Wavelength Low-Level Laser Therapy: A Comparative Study on Mice\",\"authors\":\"He Gao, Yao Liu, Zhaiyi Liu, Pengquan Wang, Zhaoyin Qin, Shuanglin Liao, Jia Mo, Lin Wang, Hsiang-Chen Chui\",\"doi\":\"10.1002/jbio.202400523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Low-level laser therapy (LLLT) is a non-invasive treatment that uses low-power lasers or light sources to stimulate biological responses. Previous studies focused on single-wavelength effects on hair growth in mice. In this study, we investigated dual-wavelength combinations to enhance hair regrowth. Using light-emitting diodes (LEDs) at 670, 680, 780, and 880 nm, we assessed the correlation between different wavelength pairs and hair regrowth after shaving in mice. Phototherapy was conducted over 14 days, with results analyzed through surface image analysis and histological examination. Our findings indicate that dual-wavelength therapy is superior to single-wavelength treatment and significantly more effective than the untreated control, demonstrating its potential for improved hair regrowth.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400523\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400523","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced Hair Regrowth Through Dual-Wavelength Low-Level Laser Therapy: A Comparative Study on Mice
Low-level laser therapy (LLLT) is a non-invasive treatment that uses low-power lasers or light sources to stimulate biological responses. Previous studies focused on single-wavelength effects on hair growth in mice. In this study, we investigated dual-wavelength combinations to enhance hair regrowth. Using light-emitting diodes (LEDs) at 670, 680, 780, and 880 nm, we assessed the correlation between different wavelength pairs and hair regrowth after shaving in mice. Phototherapy was conducted over 14 days, with results analyzed through surface image analysis and histological examination. Our findings indicate that dual-wavelength therapy is superior to single-wavelength treatment and significantly more effective than the untreated control, demonstrating its potential for improved hair regrowth.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.