{"title":"通过结构导向衍生化发现强效麻疹病毒融合抑制肽。","authors":"Ziwei Gao, Jiei Sasaki, Tateki Suzuki, Tomoaki Suzuki, Yuki Miwa, Shinsuke Sando, Takao Hashiguchi and Jumpei Morimoto","doi":"10.1039/D4MD01006J","DOIUrl":null,"url":null,"abstract":"<p >Fusion inhibitor peptide (FIP), a short peptide known as a measles virus (MeV) infection inhibitor, inhibits membrane fusion between the viral envelope of MeV and the host cell membrane. Therefore, FIP is potentially useful as a drug candidate for treating MeV infection, but improvement of inhibitory activity is desirable. In this study, we conducted a structure–activity relationship study of FIP and, based on the result and the previously reported crystal structure of the complex, we designed FIP derivatives. From a series of derivatives, we discovered an FIP derivative with a strong inhibitory activity (IC<small><sub>50</sub></small> = 210 nM) derived from the enhanced binding affinity (<em>K</em><small><sub>D</sub></small> = 6.6 nM) to the MeV fusion protein.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 4","pages":" 1619-1625"},"PeriodicalIF":3.5970,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of potent measles virus fusion inhibitor peptides via structure-guided derivatization†\",\"authors\":\"Ziwei Gao, Jiei Sasaki, Tateki Suzuki, Tomoaki Suzuki, Yuki Miwa, Shinsuke Sando, Takao Hashiguchi and Jumpei Morimoto\",\"doi\":\"10.1039/D4MD01006J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fusion inhibitor peptide (FIP), a short peptide known as a measles virus (MeV) infection inhibitor, inhibits membrane fusion between the viral envelope of MeV and the host cell membrane. Therefore, FIP is potentially useful as a drug candidate for treating MeV infection, but improvement of inhibitory activity is desirable. In this study, we conducted a structure–activity relationship study of FIP and, based on the result and the previously reported crystal structure of the complex, we designed FIP derivatives. From a series of derivatives, we discovered an FIP derivative with a strong inhibitory activity (IC<small><sub>50</sub></small> = 210 nM) derived from the enhanced binding affinity (<em>K</em><small><sub>D</sub></small> = 6.6 nM) to the MeV fusion protein.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 4\",\"pages\":\" 1619-1625\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md01006j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md01006j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
摘要
融合抑制肽(FIP)是一种被称为麻疹病毒(MeV)感染抑制剂的短肽,可抑制麻疹病毒包膜与宿主细胞膜之间的膜融合。因此,FIP作为治疗MeV感染的候选药物是潜在的有用的,但抑制活性的改善是可取的。在这项研究中,我们进行了FIP的构效关系研究,并基于结果和先前报道的配合物的晶体结构,我们设计了FIP衍生物。从一系列衍生物中,我们发现了一个具有较强抑制活性(IC50 = 210 nM)的FIP衍生物,该衍生物与MeV融合蛋白的结合亲和力(K D = 6.6 nM)增强。
Discovery of potent measles virus fusion inhibitor peptides via structure-guided derivatization†
Fusion inhibitor peptide (FIP), a short peptide known as a measles virus (MeV) infection inhibitor, inhibits membrane fusion between the viral envelope of MeV and the host cell membrane. Therefore, FIP is potentially useful as a drug candidate for treating MeV infection, but improvement of inhibitory activity is desirable. In this study, we conducted a structure–activity relationship study of FIP and, based on the result and the previously reported crystal structure of the complex, we designed FIP derivatives. From a series of derivatives, we discovered an FIP derivative with a strong inhibitory activity (IC50 = 210 nM) derived from the enhanced binding affinity (KD = 6.6 nM) to the MeV fusion protein.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.